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Abstract

The architectural design process is both subjective and objective in nature. The designer

and end user judge a design not only by objective functionality but also by subjective form.

Despite the ability of evolutionary algorithms to produce creative and novel designs, they

have primarily been used to aid the design process by optimising the functionality of a

design, once it has been instantiated. Designers should be able to express their subjective

and objective intentions with a design tool. Grammatical evolution (GE) is a form of

genetic programming that allows evolutionary techniques to be applied to systems that

can be represented as a grammar. This thesis examines approaches that allow grammatical

evolution to be used in the exploration phase of the architectural design process as well as

optimising the design to maximise functionality.

The primary focus of this thesis is to increase the amount of direct and indirect in-

teraction available to the designer for evolutionary design exploration. The research gaps

which this thesis investigates are the use of novel GE operators for active user intervention,

the development of interfaces suitable for directing evolutionary search and the application

of functional constraints for guiding aesthetic evolution. The contributions made by this

thesis are the development of two component mutation operators, a novel animated inter-

face for user-directed evolution and the implementation of a multi-objective finite element

analysis fitness function in GE for the first time.

An examination of fitness functions, operators and representations is carried out so that

the designer’s input to the evolutionary algorithm can be enhanced. An extensive review

of computer-generated architecture, interactive evolution and grammatical evolution is

conducted. Initial investigations explore whether the constraints placed on architectural

designs can be expressed as a multi-objective fitness function. The application of this

technique, as a means of reducing the search space presented to the architect, is then

evaluated.



Broadening interaction beyond evaluation increases the amount of feedback and bias

a user can apply to the search. A study is conducted to examine how integer mutation

in GE explores the search space. Two novel and distinct behavioural components in GE

mutation are shown to exist, nodal and structural mutation. The locality of the opera-

tions is examined at different levels of the derivation process. It is shown that nodal and

structural mutation cause different magnitudes of change at the phenotypic level.

An interface is designed that enables the architect to directly mutate design encodings

that they find aesthetically pleasing. User trials are then conducted on an interface for

making localised changes to an individual and evaluate whether it is capable of directing

search. The results show that users initially apply structural mutations to explore the

search space and then apply smaller nodal mutations to fine tune a solution. The novel

interface is shown to enable directed evolutionary search.
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Chapter 1

Introduction

Aesthetic and functional problems are ever present in the design process. The process

of biological evolution has clearly demonstrated its power to design elegant forms and

structures in the name of survival. As such, it is natural to turn to algorithms which

are inspired by this process to tackle design problems. Evolutionary algorithms (EAs) are

powerful problem-solving tools. This thesis will focus on novel methods for applying EAs

to the architectural design process. The design process can be broken into two different

components: the conceptual phase, where the design space is explored and the optimisation

phase, where the design space is searched for the optimal implementation of the design.

Evolutionary design has focused on the optimisation component of the design process

as it can be described with clearly defined fitness functions; accordingly, evolutionary

algorithms excel at this task. Conceptual design is more focused on the subjective qualities

of the design which only the designer can impart. There is also the potential for a design

for which it is difficult to find qualitative metrics. The research objective of this thesis

is to investigate alternative methodologies that allow the designer to use efficiently an

evolutionary algorithm as a design tool.

Architectural design is an appropriate application for design exploration and optimisa-

tion. Architecture is as closely related to art as it is to engineering because the aesthetic

of a structure is an important feature of the overall design. Yet architecture is more re-

1



1.1. PROBLEM DEFINITION

stricted than traditional art forms. There are several constraints placed on architectural

designs such as functionality and structural integrity. The mix of objective and aesthetic

considerations make it a suitable challenge for evolutionary design exploration.

1.1 Problem Definition

The experiments in this thesis investigate different methodologies for architectural design

exploration. Exploration is different to optimisation in that the goals are less clearly

defined. The intention of the user is to discover new designs or processes. Architectural

design is both the art and science of building. It is more objective than pure design as the

structures must be functional. Despite this, the architectural process has a consideration

for aesthetic qualities that compliment the utility of a structure. The following sections

describe the problem area in greater detail.

1.1.1 Computer Generated Architectural Design

While computers are ubiquitous in architectural design, they are normally used for analysis

rather than design generation and exploration. In recent years software has been developed

that allows the user to explore the search space of possible designs. Parametric design

systems enable the user to create a design and then vary components to explore the search

space, an approach that essentially describes the design as a function with inputs that alter

the design output. This thesis examines whether aspects of parametric design systems can

be introduced into evolutionary design. Structural analysis has also become an important

component of computational design. Presenting the designer with information on the

loading and stress points of a structure during modelling means the designer is capable of

manipulating the structure in order to reduce the stresses.
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1.1.2 Evolutionary Computation and Conceptual Design

While evolutionary algorithms (EAs) are predominantly seen as an optimisation technique,

their stochastic approach to search means they are capable of producing novel and unex-

pected results. This ability means that EAs have been applied to design generation prob-

lems. Several implementations for evolving conceptual designs have been previously ex-

amined. One approach that takes advantage of EAs optimisation ability is non-interactive

design evolution based on aesthetic rules [16, 118, 82]. The user weights their preference of

a series of quantifiable aesthetic rules such as symmetry, curvature, proportion, etc. The

algorithm then generates and evaluates designs based on these rules.

An alternative approach is to allow the user to assign fitness values to the designs that

they prefer [44, 174, 153, 18]. Interactive Evolutionary Computation (IEC) was developed

as a means of assigning fitness when no objective metric could be defined. Human interac-

tion has allowed EC to be applied to problems such as music and computer graphics, and

to act as an exploratory tool as opposed to its primary function as an optimiser.

Both approaches produced interesting results but they also had their disadvantages.

The non-interactive aesthetic approach is capable of producing novel and appealing designs

but there is a lack of any human intention. Using human evaluation inevitably slows down

the algorithm as it creates an evaluation bottle-neck and it is a blunt tool for guiding the

evolutionary process.

1.1.3 Grammatical Evolution

Grammatical evolution is an evolutionary algorithm that is based on genetic programming

(GP) [140]. It differs from standard GP by representing the parse-tree based structure

of GP as a linear genome. It accomplishes this by using a Genotype-Phenotype mapping

of a chromosome represented by a variable length bit or integer string. The chromosome

is made up of codons, e.g., integer values. Each codon in the string is used to select

a production rule from a context free grammar. Production rules are selected from the

grammar until all non-terminal rules are mapped and a complete program is generated. The
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immediate benefits of using this approach is that grammars ensure syntactic correctness,

compression and abstraction of information and furthermore allow for domain knowledge

to be embedded.

The advantage of using a grammar for design is that it is possible to generate any-

thing that can be described as a set of rules. Grammars are capable of generating strings,

mathematical formulas, pieces of programming code and even whole programs. Another

advantage of applying GE to design is that generative processes, like the mapping process

in GE, are required for the production of designs that can scale to a high level of com-

plexity [85]. There is an additional implicit benefit from using a grammar based approach,

grammars can be substituted without any need to change the underlying evolutionary al-

gorithm. This allows, for example, grammars based on different languages but with similar

functionality to be easily substituted.

1.2 Aim of Thesis

The focus of this thesis is to increase the amount of direct and indirect interaction available

to the designer for evolutionary design exploration. The intention of this aim is to min-

imise the fitness bottleneck by improving the means of interaction between evolutionary

algorithms and human designers. Improving the user interface allows the user’s design

preferences to be expressed and so GE becomes applicable as a design tool rather than

a design optimiser. The system should allow the user’s intentions to be expressed indi-

rectly by specifying design constraints as well as directly by manipulating the evolutionary

representation of a design.

1.3 Questions

The aim of this thesis is to increase the amount of direct and indirect interaction available

to the designer for evolutionary design exploration. To this end, the following questions

are addressed:
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• Can objective fitness functions be developed for evolving architectural designs? Ar-

chitectural design is a subjective activity but it does have certain constraints. For

example, a design must be capable of being built to the right scale and of being able

to support its own weight given the structure and materials. Can the designs that do

not conform to the explicit constraints be filtered out before being presented to the

user through the application of an automatic fitness function? Once the constraints

are expressed they will often be of a different nature, e.g., minimising the cost of

material used will often lead to minimising the structural properties, which is un-

desirable. How do we account for conflicting design constraints using such a fitness

function?

• Can search operators be developed that allow the user to directly interact with the

design at a genotypic level? When a user interacts with a finished design, the re-

sults are cosmetic changes to the phenotype that are difficult to integrate into the

genome. This problem is avoided by permitting the user to manipulate the design

at a genotypic level. To do this an understanding is required of how changes on the

genotypic scale effect the resultant phenotypic output. One measure of the genotype-

to-phenotype relation is locality, i.e., how much a change in the input changes the

output [165]. Can genotype operators be developed based on the locality of their

effect on the phenotype? Once operators have been implemented based on locality

the next question is: Can these operators be applied by the user to explore the design

space?

• How does the design of the interface effect the user’s interaction with the evolutionary

algorithm? User interaction with the underlying EA slows down the search process

considerably. Can an interface be developed that presents more of the search space

to the user? What techniques can be applied to exclude redundant designs? What

approaches are available to maximise the number of individuals processed by the

user?
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• Can a context free grammar based representation be used to generate architectural

designs? If a representation is to be used for design it must be generative and

produce novel results while reducing the overall search space. A grammar allows

incorporation of explicit design bias, i.e., domain knowledge that can reduce the

search space but is still capable of presenting novel designs.

1.3.1 Objectives of Thesis

In order to address the questions and aims specified in this chapter, there are a number of

objectives that must be fulfilled:

1. Survey the state of the art in evolutionary design and IEC.

2. Develop a fitness function that automatically selects instantiable designs from the

search space.

3. Perform an analysis of mutation in GE.

4. Create mutation operators that enable different levels of phenotypic change for in-

teractive evolutionary computation.

5. Implement interfaces that enables users to navigate search space.

6. Apply grammar based approaches to design generation.

1.4 Methodology

The subjective nature of design required that different methodologies be used through-

out the investigations of this thesis. Non-interactive experiments were first introduced to

examine the behaviour of mutation operators.

• Non-interactive fitness comparisons: Chapters 4 and 5 uses a Wilcoxon rank-sum to

analyse the change in fitness. Chapter 5 compares the difference in best fitness for the
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components of standard integer mutation whereas chapter 4 compares evolutionary

approaches against random search.

• Non-interactive distance comparisons: Chapter 6 uses a Wilcoxon rank-sum to com-

pare differences in distance between nodal an structural mutation events on successive

levels of derivation.

• Interactive survey: Chapters 4 and 6 conduct surveys on user preference of designs.

Each query presents two designs side by side. A binomial test is used to conduct an

analysis of significance.

• Interactive target matching: Chapter 7 asks the user to match a target image. The

user results are compared against randomly generated results and analysed by using

LOESS with bootstrapping and Wilcoxon rank-sum.

1.5 Contributions

The work described in this thesis has given rise to a number of contributions as described

below. Two main strands of research were carried out in this thesis: An analysis of the GE

algorithm and the application of GE to architectural design. Accordingly the contributions

are placed in the relevant categories.

1.5.1 Analysis of GE

Analysis of the behaviour of mutation in GE: The impact and classification of dif-

ferent mutation events that occur during standard integer mutation is carried out in

the experiments in chapter 5. The results show that there are two distinct behavioural

components. Integer mutation is decomposed into two component operators.

Ripple mutation: It was shown that mutation events at particular points on the chro-

mosome can alter the meaning of following codons. The result is that different
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magnitudes of change can occur for a single mutation event. The effect is similar to

ripple crossover also witnessed in GE [95].

Analysis of locality: The effect of the two component behaviours of mutation was anal-

ysed at different stages of the derivation process. Experiments were carried out to

examine the effects in detail in chapter 6.

Nodal and structural mutation operators After examining the component behaviours

of integer mutation, it was shown that they had a different effect on fitness and gener-

ated changes with different locality. Nodal mutation generated high locality changes

while structural nutation generated low locality changes throughout the mapping

process.

Euclidean graph distance: A new measure was devised to analyse the locality of the

graphs that were generated by the evolved programs in chapter 6. The measure was

used to generate a distance value for comparison at the final output stage of the

phenotype that was presented to the user.

1.5.2 Application of GE to Architectural Design

Literature review: A multidisciplinary survey of relevant literature in the fields of ar-

chitectural design and evolutionary design is presented in chapter 2. Computer gen-

erated architectural design, interactive evolutionary computation, design representa-

tions and grammatical evolution are covered in detail. Two taxonomies are described

in this section. The first taxonomy is a decomposition of architectural design into

design exploration and design optimisation approaches. The second taxonomy com-

pared the approaches of different evolutionary design software. A number of research

gaps in the literature are identified and stated. A detailed description of the algo-

rithm used in this thesis, grammatical evolution, is given in chapter 3.
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Shape generating grammars: Context free grammars were developed that had the ca-

pability to generate designs that exhibited hierarchy, modularity and regularity. This

was accomplished through the adoption of techniques from the functional program-

ming paradigm, such as lambda functions, mapping and higher order functions.

Structural analysis grammar: A methodology was developed so that stresses could be

applied automatically to the evolved structures in chapter 4. This allowed finite

element analysis to be automatically performed on the generated designs.

Multi-objective grammatical evolution: A version of the NSGA2 [46] algorithm was

adapted for use with GE in chapter 4. Implementing NSGA2 in GE allowed for

multiple design objectives to be used to generate the designs.

Design surveys: Two surveys were conducted to analyse the subjective design prefer-

ences of experiment participants. The first survey was conducted in chapter 4 and

queried the user’s aesthetic preference of designs. It was shown that the user’s pre-

ferred designs that did not meet the optimisation constraints. The second survey in

chapter 6 presented the user with two mutation events and inquired which event was

most similar to the original. The results showed that nodal mutations were more

similar to the original than structural mutation.

Novel user interface: An interface based on animating mutation events was created in

chapter 7 to allow the user to direct search during IEC. The results showed that

animating the effects of mutation presented a greater amount of the search space to

the user than static displays and allowed for evolution to be directed by the user.

Interactivity Experiments: An analysis of user behaviour in chapter 7 showed the users

moved from low to high locality operators when evolving towards a target. The

difference in the locality of the two different types of mutation event allows the user

to both explore the search space and exploit designs
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1.6 Limitations

The investigations of this thesis focused on a variety of methodologies that enable GE to

be used for interactive evolutionary design exploration. Accordingly, it did not conduct an

exhaustive analysis of all possible research avenues. There are several instances of issues

worthy of further research that fell outside the scope of this study. Below is a list of these

issues.

An exhaustive search of all possible parameter values and operator combinations. The

analysis performed on integer mutation focused purely on mutation. While the behaviour

of the operators could have been changed when combined with other search operators or

at different rates. The aim of this work was to distinguish component behaviours rather

than optimise the behaviours for the benchmark problems.

The use of a design tool is not just for target matching. Design is an exploratory

process which does not necessarily have a pre-determined outcome. However analysing

data based entirely on a user’s subjective preference of a design only provides qualitative

information rather than quantitative information. The target matching experiments allow

for measures to be used to quantify changes, which in turn allows hypotheses to be stated

and tested. While the target matching may seem like an artificial usage for a design tool

it has commonalities design exploration. An example of this would be a user trying to

combine aspects of a previously observed design with their current favorite design.

Only context-free grammars were used. Recently for example probabilistic gram-

mars [81] and tree adjoining grammars [132] have been developed for GE. The experiments

in this thesis only used traditional forms of grammar. The aim of this work was to exam-

ine architectural design generation by computers. Accordingly, the literature does not give

an exhaustive description of the field of architecture. This work also addresses aspects of

human interaction with evolutionary algorithms that potentially has value in the field of

human computer interaction (HCI), however a detailed examination of HCI goes beyond

the scope of this thesis.
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1.7 Thesis Summary

Chapter 2 contains a review of computer generated architecture, interactive evolutionary

computation and representations suitable for evolutionary design. Chapter 3 gives an

overview of grammatical evolution. It describes context free grammars, the genotype to

phenotype mapping and the operators used by the grammar to generate new individuals.

Together, these two chapters detail of the related research and implementation discussed

in this thesis.

Chapter 4 combines a shape generating grammar with engineering constraints to explore

whether the requirements of a structure can by used to evolve designs. A multi-objective

fitness function is introduced as structural analysis alone does not provide a sufficient fitness

function for evolving designs. The results show that the average fitness of the population

improves significantly over time. A survey was then carried out to examine whether users

found a search space reduced to feasible designs more interesting and appealing. The results

showed that they did not. Thereafter the studies focus on increasing user participation

rather than automating aspects of the search process.

Chapter 5 examines the integer mutation operator in GE. It is shown that there are

two component behaviours of integer mutation. These component behaviours are called

structural and nodal mutation and they are defined using formal notation. The behaviour

of the two operators is analysed against a series of benchmark problems. The experiments

first look at the best fitness result over the course of a run. The second set of experiments

analyse individual mutation events and then examine the results for statistical significance.

It is shown that the operators have distinctive search characteristics, both from each other

and from integer mutation.

Chapter 6 deepens the study carried out in the previous experiment by examining

the mutation events effect on locality during the derivation process. Different metrics are

defined for each level of the derivation process and the magnitude of change for nodal and

structural mutations is compared. It is shown that structural mutation generates a larger

change size for all the levels of derivation. In order to quantify the more subjective idea
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of similarity participants were asked to conduct an online survey. The participants found

that nodal mutations produced smaller changes to an individual than structural mutation

events.

Chapter 7 explored the application of nodal and structural mutation to individuals in

a population by the user. The initial interface produced results that were not statistically

significant from random. It was also shown that the user had no intuition of what change

to expect from applying a mutation operator. The second experiment allowed the user to

apply any mutation event and instead tracked whether it was nodal or structural. The

interface animated the mutation events so the user could rapidly observe the changes to

the individuals. The results showed that the participants could use the interface to evolve

an individual towards a target. The analysis of the user’s choice of mutation events showed

they initially started by applying structural mutation and then moved to nodal mutation

to fine-tune the solution.

Chapter 8 gives an overview of the work done in this thesis and summarises the con-

tributions. The future work that could be done in this area is specified. Appendix A lists

the grammar used to generate geometric objects and the grammars used to generate the

bridges for the experiments. Appendix B contains the design brief that was presented to

the UCD students. Appendix C contains the questionnaires and surveys the experiment

participants were required to complete after conducting the user interface experiments.
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Chapter 2

Related Research

This chapter presents related work in the field of architectural design. The investigations

in this thesis focus on this area as the combination of objective and subjective design

evaluation makes it a challenging application for evolutionary computation. The flexible

and open-ended representation used by grammatical evolution make it a suitable approach

for generating architectural designs. GE allows for the creation of novel designs that

are not explicitly defined in the grammar and for increasing design complexity through

the use of modularity [150, 81]. Architectural design is also an area of great economic

importance. The size of the architectural services industry in the U.S. alone is 40 Billion

Dollars [88]. Computational architecture is used extensively for analysis but has only found

limited application for design generation. The intention of this thesis is to build on existing

approaches and develop new techniques that allow evolutionary design to be used by the

architect.

An overview of the structure of this chapter is shown in Figure 2.1. An overview of

computer generated architectural design approaches is given in Section 2.1. The appli-

cation of structural analysis for architectural design is examined in detail in Section 2.2.

A justification is given for categorising architectural design into its exploration and op-

timisation components in Section 2.3. Different approaches to interactive evolutionary

computation (IEC) are discussed in Section 2.4 and the distinguishing characteristics be-
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tween narrow and broad levels of interaction are highlighted. The review then focuses in

detail on methods where the user participates directly by applying evolutionary operators

in Section 2.5. Finally, a number of relevant representations for generating designs are

compared and contrasted, including grammatical representations, in section 2.6.

Architectural

Design

Parametric

Systems

IEC

Narrow Broad

 Finite

Element

Analysis

Design

Exploration

Design

Optimisation

Multi

Objective

Systems

Objective

Aesthetic 

Analysis

AUI

Fig. 2.1: An overview of the related research covered in this chapter.

2.1 Computer Generated Architectural Design

While computers are ubiquitous in architectural design, they are normally used for drafting

or analysing designs rather than design generation. Examples of popular modelling software

include Sketchup [68], Rhino [129] and AutoCAD [4]. In recent years software has been

developed that allows the user to explore the search space of possible designs either through

varying a set of design parameters or by generating designs that match specified constraints.

These approaches are described in more detail in the following sections.

2.1.1 Parametric Systems

A direct approach that allows the designer to explore the design search space is to im-

plement a parametric system. The system uses algorithms to generate components of a

design and the user manipulates the variables that are inputs to the algorithms. The user
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modifies the design or components of a design by changing the input. An example of such

a function and the design output of a building are shown in Figures 2.2 and 2.3.

An important aspect of parametric design is that the user observes the effects caused

by manipulating a variable in real time. This allows the user to treat the algorithm as a

black box and they only concern themselves with the change of output relating to their

change of input.

def generate_building(floors, width, offset):

parametric function that generates a building

floors: total number of floors

width: width of each floor

offset: offset in degrees between floors

Fig. 2.2: A sample parametric function that generates a building.

(a)
generate building(3,4,0).

(b)
generate building(5,4,0),
increased floor count.

(c)
generate building(5,4,10),
increased offset.

Fig. 2.3: A parametric design example with different parameters.

Parametric design tools have now been introduced into mainstream design software.

There is the Grasshopper parametric design tool plug-in for the Rhino modelling sys-

tem [177], Bentley Systems have implemented a program called Generative Components [183]
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based on the parametric design paradigm and NASA have recently released OpenVSP, a

parametric design tool for designing aircraft [134]. Dassault Systems have developed CA-

TIA, a CAD system combined with a parametric design tool. Parametric functionality was

introduced to AutoCAD 2010 to allow for algorithmic manipulation of a design.

The parametric systems described above are the primary approach for using the com-

puter as a generative tool to create architecture. As such it has allowed the architects to

describe their designs algorithmically rather than directly specifying the final output. The

next section examines how computers are also used to analyse architectural designs during

the design process.

2.2 Structural Analysis

Structural engineering is the field of analysing and constructing designs that are capable

of handling loads. The goal of the structural engineer is to maximise resistance to load

while reducing material usage and cost. Computer modelling provides a methodology

that allows designs to be easily and quickly analysed in a virtual environment. Simulated

forces are applied to a structure and the resultant loads, stresses and deformations can

be computed. An example of this is shown in Figure 2.4. The forces on a structure are

traditionally calculated using partial differential equations (PDE). While PDEs can be

calculated using a computer, a method based on discretisation for modelling stresses is the

preferred approach [66, 200].

Finite Element Analysis (FEA) simplifies this process into a more computationally

friendly form by converting PDEs into a set of ordinary differential equations (ODE). It

does this by dividing a structure into discrete set of elements using a meshing algorithm,

such as Delaunay triangulation, and then generates the ODE for each element. This system

of equations can then be integrated using an iterative numerical method such as Euler’s

method or the Runge-Kutta method. FEA has been applied to a range of problems such as

heat transfer, electromagnetic potentials and fluid dynamics. FEA methods are applicable

to architectural designs if the components of a structure can be represented in a mesh
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(a) High load areas shown in red. (b) Scale of displacement increased to highlight
deformation.

Fig. 2.4: An electricity pylon simulating a cable break condition.

configuration.

Structural analysis is used to evaluate a design so that weak points can be found and

corrected early on in the design process. The most commonly used standalone structural

analysis packages are ANSYS [2], STAAD [10] and STRAP [69]. There are also plug-

in packages that allow for analysis of the conceptual designs. Robot structural analysis

software [5] is used in conjunction with AutoCAD to analyse designs. Scan and Solve [178]

allows designs generated in Rhino to be analysed upon creation so that the user can check

the structural integrity of their design. There are also open source analysis tools for design

post processing such as SLFFEA [107], freeFEM [158] and openFOAM [168] that allow for

analysis of correctly formatted meshes.

Combining parametric systems with structural analysis allows the user to make in-
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formed decisions about the geometric alterations during the conceptual design stage [84].

EIFForm successfully implemented a parametric design system based on generative com-

ponents that optimises parametric structures by using a simulated annealing algorithm.

The results have been used to design a structure in the inner courtyard of Schindler

house [170]. Bollinger et al. [21] have developed parametric design systems that incor-

porate structural considerations and have used it to generate roofing structures for the

BMW Welt Museum, Munich and the Rolex learning centre, EPFL, Lausanne. CATIA

was combined with GSA structural analysis software [176] to evolve roofing structures for

a football stadium [84].

Finite Element Analysis is also used to provide a fitness value for a structure so that

designs can be evolved. These approaches are covered in greater detail in Section 2.3.1.

The next section examines how evolutionary algorithms have been applied to generate

architectural designs.

2.3 Evolutionary Architectural Design

“Since design problems defy comprehensive description and offer an inexhaustible

number of solutions the design process cannot have a finite and identifiable end.

The designers job is never really done and it is probably always possible to do

better.” [106].

For an architectural design to be created several different constraints must be satisfied.

Architects evaluate all aspects of the design, from broader issues of internal and exter-

nal relationships to more detailed aesthetic measures such as material use, texture and

light. Engineers ensure that a design is capable of meeting its structural requirements by

evaluating the strength, efficiency and integrity of the structure. Design is not solely an

optimisation process and trade offs must be made at all stages of design.

Simon [172] describes how human decision making processes are based on “satisficing”.

Humans rarely have complete information, are limited by their cognitive ability and do not
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have an infinite amount of time to reach a conclusion. Accordingly they do not attempt

to find the global optimum solution but instead find a solution that satisfies some criteria

while sacrificing others. The same problems occur during the design process. It is inefficient

for a human designer to maximise all objectives simultaneously so instead they seek to find

adequate solutions to the largest number of objectives. The final design is not the global

optimum of all the design constraints but normally where several of the constraints have

met adequate levels.

Although evolutionary algorithms are traditionally viewed as optimisers their search

behaviour is more like that of a satisficer [14]. Instead of directly finding the global op-

timum, it finds improvements on existing solutions which then propagate throughout the

population. Although the algorithm is capable of finding the global optimum, this is not

guaranteed. The open-ended nature of design problems make evolutionary approaches

particularly suited to design problems as there is always the possibility of evolving an im-

provement on an existing design. The stochastic nature of an evolutionary algorithm means

that the algorithm is not limited to design optimisation but can also be used for exploring

the search space of possible designs. Fogel et al. [59] states that the inherent randomness

of the EA can create results that surprise us and introduces aspects of creativity to the

evolutionary process [59].

Whether an unthinking and blind process can be considered creative is a difficult ques-

tion due to the anthropocentric nature and subjectivity of creativity [13] and is not ad-

dressed in this work, but EAs have proved themselves capable of generating “novel solu-

tions that are qualitatively better than previous solutions” [64] and of generating human

competitive results [136] [11].

Another issue of major importance is the form a design should take. Before a design can

be optimised it must first be instantiated. Normally a designer will explore the search space

by developing several conceptual designs that are uninhibited by the expected functionality.

This design exploration phase is of paramount importance to the final outcome of the

design process. The stochastic nature of evolutionary algorithms is a suitable approach to

design exploration. An EA has no preconceived notions of how the components of a design
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should be combined. This freedom allows the algorithm to generate designs that combine

components in novel ways.

Design exploration requires that the representation being evolved is capable of gener-

ating novel and innovative designs that were not explicitly encoded in the representation.

Although this is problematic for traditional fixed length genetic algorithms, the open-

ended nature of genetic programming allows for the continual recombination of existing

components in novel ways. The module based approach of GP is appropriate for design

exploration and exploring different forms in the search space.

A sample of the existing approaches are shown in a matrix in Figure 2.5. The y-axis

categorises the applications based on their focus on the form versus the functionality of

a design. Although form and function are not mutually exclusive, they are two common

measures upon which a design can be judged. The x-axis indicates the means of evaluation

used by the algorithms. Non-interactive objective-based fitness evaluation is on the right

of the matrix while subjective user evaluation is on the left of the matrix. In the follow-

ing sections the application of evolutionary algorithms for design optimisation and design

exploration is examined.

2.3.1 Evolutionary Design Optimisation

The capability of an evolutionary algorithm to optimise a solution has been applied to

design problems since their inception. Rechenberg [162] demonstrated one of the earli-

est practical applications of evolutionary computation by optimising a two phase flashing

nozzle by combining differently shaped cross sections of pipe. Rechenberg’s approach

eventually developed into the field of evolutionary strategies. The uptake in the use of

computers for performing analysis of architectural design meant that the same evaluation

process could provide a fitness function for an evolutionary algorithm. Computer eval-

uation meant that a designer could develop a conceptual design and then allow to the

computer to further refine it.

20



2.3. EVOLUTIONARY ARCHITECTURAL DESIGN

Form

Function

Subjective Objective

GENR8

EIFForm

MOEAS

Parametric

Systems

CATIA+ GSA

Automated
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NEvAr
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Fig. 2.5: A matrix displaying the focuses of different design software.
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Structural Optimisation

The use of computers for structural analysis and FEA meant that they could also be used

to provide an objective fitness value for an evolutionary algorithm. Accordingly, there has

been a large amount of work in this area [99]. The computational cost of structural analysis

meant that early papers focused on greatly simplified structures, such as two dimensional

trusses [83]. As computational power increased, so did the scope of the applications.

Structures such as bridges [189], electricity pylons [171], and even whole buildings [98]

have been optimised using EC.

Structural optimisation is classified into three categories [91].

• Topology: The overall layout of the system

• Shape: The optimal contour for a fixed topology

• Sizing: The size and dimensions of the components

The different focus of the categories in relation to bridge design is shown in the following

Figures. Topology optimisation is shown in Figure 2.6, shape optimisation is shown in

Figure 2.7 and size optimisation is shown in Figure 2.8. The categories relate to the three

major stages of the engineering design process, i.e., the overall layout is chosen at the

conceptual stage, the shape of the structure is optimised during the embodiment stage and

the final sizing is optimised during the detail design stage [99].

a

b

c

d

e

f

g

h

i

j

k

Fig. 2.6: Topology optimisation, how the nodes are connected.

The categories form a hierarchy for the structural engineer. A topology must be fixed

before shape optimisation can be carried out. Accordingly, the components must be chosen
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Fig. 2.7: Shape optimisation, how the nodes are positioned.

Fig. 2.8: Sizing Optimisation, the diameter of the edges.

before their sizing can be optimised. An example of optimising topology is the paper by

Bohnenberger et al. [20] where the leg of an electricity pylon is evolved. The edges of the

graph are subdivided and nodes added to increase the overall strength of the pylon leg.

An example of topology optimisation that is not graph based is the Voxel based work

by Zuo et al. [202] where volumetric pixels were added and removed from a truss structure

to maximise the stiffness of a Michell truss. The work by Shea et al. [171] is an example

of placement optimisation. Their approach used simulated annealing to optimise both the

number and placement of nodes in a transmission tower.

Topping and Leite [189] provide an example of sizing optimisation where the fitness

was a function of the total volume. Their approach used a system of parallel GAs to

optimise the sizing of a cable stay bridge. The overall topology of the structure remained

fixed while aspects such as the cross sectional area of the girders and cables were allowed

to vary.

Engineering constraints play an integral role in the design of architecture. If a system is

going to be designed so that it is capable of producing feasible designs, it must incorporate

structural analysis into the design tool. This will allow the user to make an informed
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decision about the structural integrity of their design and provides a fitness mechanism for

evolving structurally sound designs.

Multi Objective Fitness

When there is a conflict between design objectives, it means that a trade off is required

between them. An example of such a conflict during the design process would be minimising

the amount of material used to build a structure while trying to reduce the load on the

structure’s components. When optimising designs with multiple constraints two approaches

can be taken. The constraints can be weighted and summed, thus reducing a multi objective

problem back to a single objective problem, this simplifies the problem but the correct

weighting must be manually chosen.

The alternative approach is that there is no globally optimal solution. Instead the

solutions can be placed on a “front” composed of the non dominated solutions in the

population. The set of non-dominated solutions are solutions that are better than the

rest of the population for at least a single constraint and at least equivalent for all other

constraints. The set of non-dominated solutions form what is called the pareto front.

Substituting one solution for another on the pareto front will always sacrifice quality for

at least one constraint, while improving at least one other.

EAs have proved themselves a successful methodology for optimising multi-objective

problems. Esbensen et al. [56] used a GA for optimising the floor plan of an integrated

circuit. This problem has multiple conflicting objectives such as routing congestion min-

imisation and delay minimisation that require compromises. Their approach displayed

graphs that showed the progression of the algorithm so that the user could navigate the

pareto-front and weight the trade-offs. The constraints are path-delay, routing congestion,

area minimisation and aspect ratio.

The design of an antenna requires a trade off between larger bandwidth versus higher

gain. Koulouridis et al. [102] builds a pareto front using a novel approach, sequential

categorisation of the designs for each objective and then only selecting feasible designs
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that fulfill the criteria. The graphs of the pareto front were color coded based on the size

of the antenna which allowed the user to visually exclude improperly sized antennas from

the pareto front.

Bentley [11] developed the evolutionary design system, Genetic Algorithm Designer

(GADES). The system was tasked with optimising the room layout for a hospital floor

plan. The criteria for the designs were specified, such as locating the x-ray departments

and eye departments should be in darker areas of the building while the ward should be

brightly lit. The evolved designs were evaluated by each criteria and a weighted total of

the fitness values generated the fitness value.

A more advanced approach to calculating fitness for multiple objectives is the ranked-

sum method used by Coia and Ross [39]. Their system developed conceptual building

designs using a shape generating grammar combined with CityEngine software [53]. The

designs were evaluated by geometric rules such as surface area, the number of unique

normals and building height. The normalised rank for every individual in the population

was calculated for each metric. The ranks were then summed to calculate the fitness for

the individuals.

2.3.2 Evolutionary Design Exploration

Characterising design as a search problem oversimplifies the design process. A designer

does more than optimise, they impart their subjective preferences and give artistic form

to their designs. Evolutionary design systems should be seen as generative processes that

are able to evaluate their own output [92]. If the representation used is sufficiently flexible,

the EA has the ability to create surprising and unexpected designs. The representation

used by grammatical evolution is especially suited to design exploration. Grammatical

evolution allows for the definition of components that can then be recombined in novel and

unexpected ways. This methodology means that, with a suitably expressive grammar, an

endless number of forms can be generated [14].

EAs have the additional advantage that they have no subjective bias of what a design
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should look like. Nor does it suffer from a functional fixedness [52], i.e., an inability to use

components of a design in a way that they were not originally intended. An example of

this behaviour is the use feedback loops instead of boolean logic to generate functionality

in a VLSI circuit [188].

One of the earliest researchers to adapt evolutionary processes to explore architec-

tural designs was John Frazer. He pioneered early evolutionary design systems such as

rep-tile [60] which incorporates notions of growth and evolution and investigated the fun-

damental form-generating processes in architecture. Their work considered architecture

as a form of artificial life, and proposed a genetic representation in a form of DNA-like

code-script, which could then be subject to developmental and evolutionary processes in

response to the user and the environment.

There are two approaches to evolving aesthetically pleasing designs, evaluating the

designs based on objective measures or evaluating the designs based on subjective user

preference. The next two sections will discuss both approaches in detail.

Objective Aesthetic Exploration

An automated approach to evolutionary design exploration is to evaluate the designs using

objective aesthetic measures. Either the user calibrates the measures manually or an

algorithm attempts to learn the correct settings from previous user selections. Automating

the evaluation process allows the algorithm to evaluate much more of the search space and

reduces the fitness bottleneck (discussed in greater detail in Section 2.4).

The use of GAs in design by Bentley [16] and [17] showed early on that GAs could

generate complex designs by using a mapping process and that these designs could by

optimised by both structural and aesthetic objectives. The system focused on the geometry

of three dimensional solid objects and used a multi-objective fitness function for specifying

the desired output. The design was evaluated by attributes such as size, mass, area of flat

surface and stability.

The work by Machado et al. [118] showed that adaptive automatic critics were capable
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of evaluating stylistic content. Their system used a feature extractor and an evaluator.

Separating the evaluator module allowed for it to be applied to different domains such

as music and visual art. The evaluator consisted of a neural network trained by back

propagation to categorise different artistic styles. Their results showed that the critic was

capable of learning differences in style from different domains. This meant that if the

preferred style of a user could be learned the algorithm could automatically evolve designs

of that style.

A novel approach by Ventrella [192] used both objective and subjective measures for

evolving appealing gait animations. In an effort to capture the “expressivity” or aesthetic

preference of the animator, the animator forms part of the evaluation process. The gaits

were initially evolved using objective fitness functions such as locomotion distance and head

height while designs were penalised for head collisions and excessive body flipping. The user

then selected their preferred gaits from the optimised individuals for further evolution. The

objective functions reduce the search space to plausible designs thus reducing the fitness

bottleneck

A simplified approach to obtaining a user’s stylistic preference is the work by Tsutsumi

and Sasaki [190]. The algorithm developed an optimum roof design using the finite element

analysis and a genetic algorithm. Aesthetic fitness is provided by a neural network (NN).

A survey is administered to the user and their preferences recorded. The results of the

survey are then analysed by a NN to learn the user preference The neural network then

acts as the fitness evaluator in place of the user.

A design system for generating abstract conceptual design was developed by O’Reilly

and Hemberg [153]. The system uses GE and Hemberg Extended Map L-Systems (HEMLS)

to generate forms. Each design is evaluated by a series of metrics; symmetry, undulation,

size, smoothness, etc. The user is able to weight the respective fitness for these metrics

according to their preference. The user could also influence the algorithm by adding tropism

before the evolution process began.

User preferences through weighting was also used by Parmee [156]. Their system added

interactive weighting to their existing multi-objective design tool. The user first sets the
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objectives that require investigation. Although initially all objectives are equally weighted

the user can their preferences for each of the metrics. This work was extended by Machwe

et al. [120] into the interactive evolutionary design environment. Their approach added

user interaction to a multi-objective design system by asking the user to weight the fit-

ness functions. Machwe and Parmee [119] then developed this approach further by adding

aesthetic rules for symmetry, slenderness and uniformity to the fitness evaluation

While objective fitness evaluation has shown itself capable of generating interesting and

novel designs, the intention of the work described in this thesis is to act as a design tool

that is used directly by the designer. Accordingly the next section examines approaches

where the user participates in directing the evolutionary algorithm.

Subjective Aesthetic Exploration

The problem with objectifying aesthetic considerations is that it removes the designer

from the design process. If an evolutionary algorithm is to be used for aesthetic design it

must allow the designer to interact with the algorithm. As stated by Bentley and O’Reilly

[15], “the designer must be allowed to design and the algorithm should act as a creativity

enhancement”. For this to work there must be a balance of control for the designers, let

them interrupt and change and don’t get it to do everything. “Best utility can be achieved

from systems that enhance the designers inherent capabilities” [43].

O’Reilly and Ramachandran [154] described a form design tool that instead used GP

and interactive rating to judge the form of the design. Their focus was on creating a tool for

form discovery, not just optimisation and it attempts to use the architect’s own language.

This approach was further developed allow the user to influence the design by controlling

the environment as well as the fitness function. O’Reilly and Testa [151] described MOSS

(Morphogenic Surface Structure Generator) that grows designs using Lindenmayer systems

in conjunction with repellors and attractors.

The functionality of interrupt, intervene and resume (IIR) [15] was built upon these

existing systems in GENR8 O’Reilly and Hemberg [153]. GENR8 allowed for increased user
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input by adding tropism and adjusting the weights of the evaluation criteria like in their

previous work but also allowed the user to interrupt the design process. Once the design

process was stopped the user could change the weighting for evaluation constraints and

then resume the evolutionary process. This approach was also used by Bezirtzis et al. [18]

in which they used a GA to evolve the parameters for the structure of one person vehicles.

User interaction was provided using sliders to vary the parameters for the purpose of fine

tuning the search.

The user interaction with evolutionary algorithms that have just been discussed only

focus on architectural design applications but there exists a much larger body of research

in this area. As the aim of this work is to maximise the user input to the design tool, an

overview of interactive evolutionary computation (IEC) when applied to different problem

areas is given in the next section.

2.4 Interactive Evolutionary Computation

Human interaction was originally introduced to the evolutionary process for problems

where no objective fitness function could be found. Interactive fitness functions have

allowed EC to be applied to problems that have aesthetic considerations such as music and

computer graphics, This allows EAs to function as an exploratory tool as opposed to being

limited to optimisation.

One of the earliest attempts to introduce human evaluation was the work by Richard

Dawkins called Biomorphs [44]. This work simulated the evolution of 2-D branching struc-

tures made from sets of genetic parameters, where the user selects the individuals for

reproduction.
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After Biomorphs there was an increase of research in the field of both interactive genetic

algorithms (IGA) and interactive genetic programming (IGP). The seminal paper by Karl

Sims [174] showed that basic user interaction was capable of creating complex and beautiful

artwork. Sims used human interaction to create images, three-dimensional textures, and,

by adding an extra dimension for time, animation. IEC has since been applied to fields as

diverse as music generation [19, 127, 40], anthropomorphic symbols [51], 3D lighting [3],

logo design [143], 3D image generation [135], and aircraft frames [157].

IEC has been applied as a supplementary tool in the design of various aspects of the

design of vehicles, bridges, aircraft and other large-scale engineering projects. [120, 24,

119, 121]. Design problems have a subjective aesthetic element in their evaluation that is

difficult to define in an algorithmic fitness function. This has led to the integration of user

evaluation in form design tools [154, 15, 18].

The primary problem with user interaction is the “fitness bottleneck” [19]. An algorithm

can evaluate individuals in parallel and is limited only by the speed and number of the

processors. Humans, conversely, can only process small amounts of input that is limited

by their perceptual abilities and can only assign fitness to individuals serially. Miller [130]

showed that humans have difficulty handling more than approximately seven quantized

measurements of information. This is true regardless of sensory modality. The result is

that user input slows the process of the EA due to the limited number of evaluations that

they can perform.

The subjective nature of human preference can also confuse an evolutionary algo-

rithm. Dorris et al. [51] used IEC to evolve anthropomorphic men to symbolise different

emotions, anger fear joy and sadness. They found that many of the participants didn’t agree

on the results and that the resulting designs would not have passed ISO standards. Breuke-

laar et al. [25] compares human interaction against an ideal user in colour matching. The

results showed that the human input is extremely noisy and can easily confuse the algo-

rithm. Their work also showed that this noise cannot be simulated by adding randomised

noise.

There are many different implementations that vary the level of interaction and the
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amount of information provided to the user. How the user interacts with the algorithm is

of paramount importance. In his survey paper Takagi [186] broadly splits IEC into two

different categories based on the level of interaction the user, narrow and broad.

Narrow IEC (NIEC) limits the user input to applying fitness evaluations on individuals

in the population. The applications described above are examples of NIEC. Providing a

fitness value for the individuals allows the algorithm to evolve the individuals with a high

fitness. The questions that arise with NIEC is how best to present the individuals to the

user for evaluation and how many levels of fitness value should the user be allowed to

assign.

In an effort to ease the burden on the user and reduce the fitness bottleneck, several

different approaches have been taken. Ohsaki [137] interactively evolved facial expressions.

They compared differently quantized sets of discrete fitness and examined how the evalua-

tion levels available affected convergence. They found that a smaller number of categories

can significantly reduce the psychological stress of the human operators while not having

a large impact on convergence.

While this shows the use of discrete fitness values reduced user burden while still al-

lowing the algorithm to evolve improved solutions. The user is still limited to evaluation.

In the next section the broader approaches to IEC are explored in more detail.

2.4.1 Broad IEC

While improvements to the evaluation interface have been shown to reduce evaluation

times there have been other attempts that broaden the user’s interaction beyond that of

evaluation. Broad IEC can be accomplished by automatically generating a fitness function

from the user’s preferences or allowing the user to guide the algorithm through different

means.

There have been several approaches to automatically intuit the user preferences based

on their previous choices and so speed up convergence. Costelloe and Ryan [40] used tree

based genetic programming to learn a user’s historical preference data and then use this
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information to generate pleasing drum loops. Baluja et al. [7] used a GA to generate

two dimensional gray-scale image and the user then selected the images they found most

aesthetically pleasing. The user’s preferred images were then used to train an artificial

neural network which could then be used to generate images of a similar theme.

Instead of building an automatic fitness function based on previous user preference,

several approaches augment user selections with a complementary fitness function. Gu et al.

[70] uses a General Regression NN to discover the intentions of the user and reduce fitness

bottleneck while evolving architecture. In a similar approach Ohsaki and Takagi [138]

used a neural network (NN) and a Euclidean distance measure applied to fitness results

to order the individuals before presenting them to the user. Llorà et al. [112] used partial

ordering, induced complete ordering and support vector machines (SVM) to speed up rate

of convergence of IEC. The aim was to produce a synthetic fitness from the subjective user

fitness. The results on a one-max problem showed it increased speedup seven times.

While broad IEC techniques have proved themselves on several applications,they may

not provide a benefit for design exploration. If the user does not know in advance what

they are looking for, how is a predictive algorithm meant to deduce their preference?

The approach discussed in this thesis utilises user evaluations to direct the evolutionary

search but also combines it with lower level user input by allowing the user to manipulate

the genome directly. The approaches that allow the user to directly interact with the

evolutionary algorithm are now examined in greater detail.

2.5 Active User Intervention

Approaches that increase user participation in the evolutionary process through means

other than evaluation are categorised as active user intervention (AUI) [186]. Several

successful methodologies have been used to increase user participation.
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2.5.1 Online Knowledge Embedding

Online knowledge embedding (OLKE) [185] provides a mechanism for directing the algo-

rithm through hints, ideas or intentions. The user highlights components of a design that

they think have high fitness and the genes relating to these components are then fixed,

which reduces the search space.

An example of this is the tracking a criminal suspect through face-space with a genetic

algorithm [35]. The main advantage of using IEC for this task was that it relied on human

recognition instead of human recall. Identikit images that are normally used for criminal

investigations were evaluated by the user. There were 10 discrete values for rating the

likeness. If a user felt that they had matched a particular feature they could set it so it

would stay fixed for the rest of the run. OLKE is only possible if each component of the

output maps directly to a particular gene.

Hart [76] developed an evolutionary art that used a novel form of tree alignment to

create better genetic dissolves. The user was given fine grained control of the mutation

operator and was allowed to select or mask different types of mutation. They could also

adjust the relative probability of mutation and bias the mutation rate depending on tree

depth. This work is notable for letting the user apply their own intuition on the operator.

SBART [191] a 2D picture generator, enables the user to break parts of the population

into different sub-populations. Each sub population evolves separately from their neigh-

bours. Individuals may be saved and introduced into different populations, thus allowing

individuals to be treated as “digital amber” [163], a metaphor for how the genetic code of

an individual organism is preserved in the computer after a run is terminated, and whereby

it may be reintroduced into future populations or reused in a different run entirely.

The approach of grouping and categorizing interesting individuals was also used in the

evolutionary art tool NEvAr [117]. During the exploration stage of the selection process

the chosen individuals are saved in a separate gallery. The user may then categorise the

individuals as images that should be discarded, images that may be useful, images that

should be further refined, and images that are artworks that fully satisfy the user’s aesthetic
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criteria.

2.5.2 Visualised IEC

Visualised IEC (VIEC) collapses a multi-dimensional search space into a 2D representation.

The individuals are then mapped to the 2D space and presented to the user. The user

is able to observe the distribution and fitness of the population and direct the search to

particular parts of the search space, thus combining both evolutionary and human search

techniques. VIEC has been shown to dramatically improve convergence. Hayashida and

Takagi [77] used self organising maps (SOM) to collapse an n-D Schaffer function into a 2-

D representation and Hayashida and Takagi [78] compared different methods for mapping

an n-D function to a 2-D representation. The problem with VIEC is that a meaningful

mapping from n-D to 2-D space must be performed and the topological relationships must

remain intact.

2.5.3 Human Based Genetic Algorithm

Human based genetic algorithms (HBGA) enable the user to apply low level genetic op-

erators such as mutation, initialisation, selection and crossover to the population [101].

Using humans is useful in problems such as evolving natural language statements, where it

is hard to design efficient computational operators. HBGA requires that an individual in

the population can be understood by the user and that the operators perform in a manner

intuitive to the user.

Hyper-interactive evolutionary computation (HIEC) extends HBGA by giving the users

access all the genetic operators [27]. HIEC treats the operators as a tool set for the user.

Additional operators such as duplicate, delete are available to the users. The approach

taken in this thesis is similar to HBGA in that the users choose when and where to apply

mutation operators. The difference is that the users are presented with the consequences

of applying an operator and they select the change they want.

34



2.6. REPRESENTATION FOR DESIGN

McDermott et al. [123] compared several techniques for synthesising a target sound.

One approach implemented a sweeping interface that allowed the user to interpolate be-

tween a population of three individuals. The interface provided direct feedback to the user

as they heard the sound created by the interpolation of the individuals. The results showed

that the interface provided a benefit in some circumstances, such as specifying timbre.

2.6 Representation for Design

Evolutionary algorithms do not have access to the entire problem space, only the solutions

that they are capable of generating. In this case, this limits all hypothetical exploration

to a subset of all possible designs. This point was further elucidated in the thesis by Jones

[93]. The representation cannot be considered independently from the operators that are

used to navigate the search space. A representation is the combination of an encoding and

the operators as illustrated in Figure 2.9. As such the EA does not explore all solutions in

the representation space, only those that it can reach with the available operators.

Representation

Shape

Grammar

LSystemCFSG

EncodingOperators

Indirect Direct

Voxel Bitmap

Interactive Automatic

NEAT

Fig. 2.9: Different components of the design representation.

The next section now discusses different choices of representation and operators for

evolving designs.

2.6.1 Encodings

To evolve architecture, a technique is required to generate evolvable shapes. The search

space of all possible designs is infinite [106]. The first approach to limiting the search space
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that must be searched is to limit the representation. The limitations of early GA systems

was that they could not easily extend or grow their representations. Traditional Evolu-

tionary Strategies (ES) and Evolutionary Programming (EP) use a one to one mapping

from the genotype and the phenotype and so can only be used to evolve components of a

design that can be represented as integer strings. The same is true for GAs if no additional

mapping is used [20, 45].

A direct mapping means that the complexity of the design is proportional to the length

of the genome. Anything more complicated requires the genotype to be extended and so

the search space increases. Using the integer phenotype of a GA alone is not a sufficient

representation for complex designs. Bentley [14] compared GA’s with an explicit mapping

and GP representations against ES and EP representations and found that a mapping

process enabled the generation of more complex patterns. A sufficient representation and

is necessary to generate complex designs.

If a representation is to be capable of generating complex designs it must exhibit mod-

ularity, regularity and hierarchy [86]. An important aspect is to have a component based

representation [14]. Fixed length representations can optimise but are limited in their ex-

ploration. Components can allow for more creativity in knowledge lean environments. ES

and EP have no mapping, they work directly on the solution. Component based solutions

are required to see evolutionary ”creativity”. Unconstrained, knowledge lean environments

help this process.

A mapping process is required to generate complex designs from integer representations.

The effects of different types of mapping was explored by Bentley and Kumar [12]. The

work compared different growth processes: as written by the programmer (external), a

component based approach based on GP (explicit) and a combination of a GA using a

cellular automata as the environment (implicit). The results showed that implicit encodings

performed better but that both explicit and implicit encodings could scale to form complex

designs. The following sections examine both direct and indirect encodings for generating

designs.
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2.6.2 Direct Encodings

Direct encodings have a one-to-one correspondence between the genotype and phenotype,

i.e., the genotype is the same as the phenotype and the evolutionary operators are applied

directly to the output. While there is normally some mapping process, such as turning

a linear genome into a two dimensional plane, this is applied after the output has been

produced rather than rules mapping the genotype to the phenotype. Direct encodings have

the advantage that they are easy to implement and can be evolved using fixed length GAs.

Two direct encoding examples are now examined.

Bitmap Encoding

One of the simplest representations is the bitmap representation. By mapping each bit or

codon in the genotypic representation of an evolutionary algorithm to a coordinate position

of a pixel on a 2-D plane, an image or design can be evolved. Two dimensional examples

of bitmap design evolution would be evolving the topology of a Mitchell truss by adding

and removing elements [202] and developmental approach to evolving a french flag[131].

Devert et al. [50] developed Eiffelblob which used a developmental approach to optimise

each beam as it is loaded and stressed. It performed actions at a geometric level on a 2-D

graph structure.

Voxel Encoding

An example of a voxel representation defines volumetric pixels in a three dimensional

space. An example of such an approach is the work by Baron et al. [9] which generated

components for shape optimisation. Voxels allowed designs to be generated with no prior

specification of the topology while still allowing geometric constraints to be imposed. The

designs were evaluated using finite element analysis and then their topology was further

optimised.

The disadvantage of direct encodings is that they do not easily allow for reuse or for

modules to be defined. The encoding also scales poorly. The chromosome grows linearly
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with the size of the design that is being represented. As such a better approach is to have

a mapping process to generate more complicated structures.

2.6.3 Indirect Encodings

An indirect encoding means that the genotype uses a mapping process to generate a pheno-

type. An example of this is codons being used to select rules from a grammar to generate a

sentence. The advantage of using a generative encoding is that it allows a highly compact

encoding to generate complex designs. The separation of the search space (genotype) from

the problem domain provides a level of abstraction so the same EA may be applied to

different problem domains.

Indirect encodings can also easily have repetition of components that work, instead of

having to find out everything again from first principles. Modules and reuse enable the

designs to become more complex. Another advantage of using the modular structure in

the form of rules in a grammar is that it results in a compressed representation.

Shape Grammars

Shape grammars are a production system that is capable of generating geometrical shapes

in two or three dimensions [181]. This formalism uses three types of rules, a start rule,

at least one transformation rule and a termination rule. The transformation rules are

applied to the start rule to generate shapes until a termination rule is reached. Shape

grammars have had several successful applications for generating designs. Koning and

Eizenberg [100] generated prairie houses in the style of Frank Lloyd Wright by starting

at the central fireplace and building around it with variations on his tradition design. A

shape grammar for describing and generating coffee maker designs was set out in [1] and

there have been several shape grammars for capturing the aesthetic signature of classic

designs such as the work by Pugliese and Cagan [161] on Harley Davidson motorcycles and

the work by McCormack et al. [122] on Buick cars.

While shape grammars have a great expressive power, there is an inherent difficulty with
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implementing shape grammars on a computer. The computer must be able to recognise

emergent shapes so that transformational rules may be applied to them. Computer vision

algorithms are required to categorise these emergent shapes. The problem is explained

in [65]. There are three components required to implement shape grammars on a computer.

An interpreter is required to apply shape grammar rules, a parser to deduce if a shape is

in the shape grammar, and an inference program that given a set of shapes would infer the

rules that created them.

Sub-shape recognition has been shown to be NP-Hard [199]. In an effort to simplify the

sub-shape recognition problem, Yue et al. [199], uses a graph like data structure that makes

it easier to detect sub-shapes. Another approach [187] used a grid system and registration

points for detecting shapes but the implementation limited the designs to 2-D rectangular

shapes.

Lee and Tang [108] used parametric grammars and labels on a GP-GA hybrid to evolve

variations on the design of a camera. Their approach used labelling to simplify the shape

grammars and maintain stylistic consistency. The user was allowed to interact with the

design process by manipulating the parameters during run time.

Context-Free Shape Grammars

Grammars are a simple way of describing a generative encoding that allow for syntactical

correctness, compression and domain knowledge embedding [81]. A grammar defines ev-

erything that can be said in a language. A correctly formed grammar ensures that every

completely mapped individual is valid. As well as ensuring syntactic correctness, grammars

allow domain knowledge to be embedded in the system. By constraining the system to

particular constructions or by calling predefined functions, the user can manipulate how

the individuals generated by the grammar will behave.

Whigham [194] showed how a grammar can allow an evolutionary algorithm to be

biased towards particular solutions. Whigham listed the biases that can be applied by a

grammar as:
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• The problem representation

• The operators used to search the representation space

• The structural constraints of the representations

• The search constraints when manipulating the representation

• The criterion used to evaluate proposed solutions

Grammars are a suitable choice for design representation for the reason listed above.

McDermott et al. [125] compared shape grammars with context free grammars for design

generation. It was shown that CFG grammars are easier to manipulate and eliminate

much of the ambiguity present in shape grammar mappings-terminals. For the reasons

listed above grammars have been used in several approaches to generate designs.

The work by Wonka et al. [196] used a grammar based approach for rapidly generating

feasible architecture. By separating the generation process into split and set grammars

they could generate varied architectural structures that still had aspects of regularity. Set

grammars specify the overall layout of a design while split grammars break up an object

into smaller interchangeable components. The results generated by the split grammar

would then be used as components by the set grammar.

Coia and Ross [39] combined a context free grammar with CityEngine [53] for generating

three dimensional buildings. The grammar applied rules such as extrude, rotate, split

scale and insert, to a starting component to generate connected yet varied designs. The

buildings were evolved using objective aesthetic constraints such as the number of unique

face normals, overall surface area and overall height.

Machado et al. [116] used a graph based evolutionary approach combined with context

free design grammars to evolve images. Context Free Art [41] is image generation software

that uses context free design grammars to generate shapes and patterns. In this work

the genotype was a well formed context free grammar that was represented as a graph.

The graph used nodes to encode for non-terminals and the edges were annotated with the
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parameter values being passed to the non-terminals. The experiments used both objective

and subjective fitness tests.

O’Neill et al. [149] used CFGs in conjunction with grammatical evolution to generate

two dimensional shapes. An objective fitness function and a specific target was used to

automatically evolve designs. This work was furthered in O’Neill et al. [150] to make three

dimensional designs for a smoking shelter. The output was rendered using Blender [180]

and a user interface was provided for interactive fitness evaluation. The results attained

were limited by the fact that many designs in the grammar were not connected to each

other.

In an effort to create more coherent designs and also to avoid problems of infinite

recursion in a grammar, higher order functions (HOF) were introduced. Currying higher

order functions, i.e., setting a function argument to a fixed value, allows recursion to be

used without having to worry about non terminating recursive calls Yu [198]. McDermott

et al. [126] incorporated this approach into a CFG. Combining higher order functions and

lambda abstraction meant that the problem of connectedness in a generated design was

addressed and it also allowed for more modularity, regularity and hierarchy in the resulting

designs.

NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) is a methodology that allows for neural

networks to be evolved [179]. It uses a genetic algorithm to evolve the weights and struc-

tures for a NN. Initially the NN is constrained to simple perceptron configuration and is

allowed to increase complexity over time. A specialised version of NEAT called hypercube-

based NEAT (hyperNEAT) has been used to evolve designs and art. HyperNEAT builds

on compositional pattern producing networks (CPPN), a form of ANN, to output designs.

The first application of NEAT for art was Picbreeder [167]. This used the CPPNs

to output two dimensional designs. The fitness for the algorithm was provided by an

online community of participants. This work was developed further into three dimensional
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objects [38]. Endless forms is an online collaboration that uses CPPNs to develop shapes

which can then be printed.

While CPPNs are capable of generating complex and beautiful designs, the complicated

mapping process complicates user interaction. Woolley and Stanley [197] tried to re-evolve

targets using an automatic measure, and failed to match them. The reason for this was

that the original evolutionary process had to evolve small components and then combine

them as opposed to evolving everything in one go.

Lindenmayer Systems

A Lindenmayer system (L-system) is a parallel rewriting system that was developed to

model the growth processes of plant development on a computer [160]. It has since been

developed to generate fractal designs and model other physical growth processes. As it had

been previously proved itself as a compact representation for generating complex designs

it was used for evolutionary design.

Hornby and Pollack [85] combined a 3D turtle graphics system with an L-systems to

evolve table designs. They compared a generative and a non-generative encoding and

found that the re-use and repetition of the generative encoding produced better designs

more easily.

As an L-system is based on a rewrite system, it can be represented as a CFG. O’Neill

and Brabazon [143] used a CFG to act as an L-System and generate images. The results of

the L-system were graphed by generating instructions that could be placed in a postscript

file and then viewed. Fitness was provided by the user and the system showed itself capable

of generating varied and innovative designs. O’Reilly and Hemberg [153] used a variation of

L-systems to generate conceptual designs in their design tool GENR8. Hemberg Extended

L-systems (HEMLS) extended Map L-Systems [111] by adding turn angle and branch angle

rules. This allowed the designs generated by the grammar to occupy a three dimensional

space.

Smith and Rieffel [175] describes a generative system that uses a tetrahedron grammar
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also derived from a Map L-system. The grammar generated bodies for artificial life robots

that are then evaluated using PhysX physics engine. Drawing the analogy between the

edges of a graph and the faces of a tetrahedron, they extended the Map L-System to work

on three dimensional faces rather than two dimensional edges.

2.6.4 Operators

The representation cannot be considered independently from the operators that are used to

navigate it. If representations are to be discussed then the manner in which the operators

move around the search space must also be examined. Jones [93] originally highlighted

how operators in conjunction with the encoding define the search space. As grammatical

evolution is the algorithm used throughout this thesis, the operators used by GE will be

examined in detail in chapter 3.

2.7 Discussion

The intention of this thesis is to build on the works described above and apply their ap-

proaches to the area of evolutionary design exploration. Although interactive approaches

to EC have been proven to allow directed evolution, interactive GE has only had limited

application to the field of architectural design exploration. This thesis intends to broaden

this research and to investigate and address the following research gaps; Active user inter-

vention through the use of novel operators in GE, the application of structural analysis for

aesthetic evolution and the development of user interfaces suitable for IEC.

Specifically, the combination of objective and subjective fitness evaluation for reducing

the search space described in Ventrella [192] is implemented in Chapter 4. The analysis

performed on mutation in Chapter 5 and Chapter 6 was done with the intention of devel-

oping user operators for active user intervention as described in Section 2.5. The idea of

interrupt, intervene and resume described in Section 2.3.2 provides the motivation for the

interface described in Chapter 7. By using techniques that have already proven successful
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when applied in different research areas, this thesis intend to broaden the application of

EC to the field of architectural design.

2.8 Summary

This chapter presented an overview of literature related to the investigations of this thesis.

Different approaches to computer generated architectural design and the application of

EAs to design problems was then examined. An explanation of narrow and broad IEC was

given and different methods for active user intervention were discussed in detail. Finally,

different representations suitable for design generation were discussed. The next chapter

presents a detailed description of the algorithm used in the investigations of this thesis,

grammatical evolution.
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Chapter 3

Grammatical Evolution

Grammatical evolution [145, 48] is a grammar based form of genetic programming [128] that

uses evolutionary processes to automatically generate programs. This chapter describes the

algorithm that is the basis of the investigations in this thesis. GE differs from traditional

GP by replacing the parse-tree based structure of GP with a linear genome [140]. The

algorithm is modelled after the process that transcribes a DNA sequence into a protein.

This abstraction, called the genotype to phenotype mapping, is the primary difference

between GE and tree based GP. The evolutionary operators of tree based GP directly

manipulate the structure of a program tree. While the tree itself could be viewed as a

genotypic encoding and the output of the program as the phenotype, this mapping is

implicit. GE uses an explicit mapping procedure.

GE accomplishes the mapping process by combining a context free grammar (CFG)

with a rule selection mechanism based on DNA. The DNA is represented as a binary or

integer string and it is used to select rules from the grammar to generate an output. Ab-

stracting the representation upon which evolutionary operators are applied from the final

output allows GE to be applied to any problems that can be represented by a grammar.

The investigations of this thesis intend to combine CFGs capable of generating three di-

mensional shapes with the GE algorithm and examine if evolution can be used to direct

the design process.
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Context free grammars allow complex language constructions to be represented effi-

ciently in a compact format and GE provides a generic methodology for evolving that

format. Accordingly GE has been utilised in a variety of applications such as financial

modelling [23, 42], computer generated animation [133], computer game AI [29, 113], fem-

tocell configuration [79], 3D image generation [135] and music generation [127]. The results

of these applications showed that GE was capable of using evolution to direct search in

these problem spaces.

This chapter is organised into the following sections. A definition of context free gram-

mars and the formal notation used to describe CFGs are described in Section 3.2. An

explanation of the genotype to phenotype mapping process is described in Section 3.3.

Different approaches to initialising the population are addressed in Section 3.4. The oper-

ators applied to the genotypic representation are explained in Section 3.5. A summary of

the chapter is given in Section 3.6.

3.1 Overview

The intention of this section is to give a brief explanation of the GE process, as shown

in Figure 3.1. The first step is to create an initial population. The individuals in this

population consist of integer strings. The integer strings, referred to in GE as chromosomes,

are used to select rules from a context free grammar. Iterating through the rule productions

outputs a string in the language represented by the context free grammar. The string is

referred to as the phenotype and represents a program. The program is executed to generate

an output. The output is then evaluated using a predefined fitness function.

Once a fitness value has been assigned to every individual in the population, a subset of

the population is chosen to generate the next population. The selection operators use the

fitness values and a probabilistic mechanism to pick individuals. If the best individual in

the population has reached the stopping criteria then the process is terminated, otherwise

the selected subset of the population are passed to the variation operators.

GE is similar to traditional genetic algorithms as the evolutionary processes are carried
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Fig. 3.1: An overview of the GE algorithm.

out on the integer string. The crossover operator exchanges components of individuals

with other individuals in the population. An element of mutation and variation is intro-

duced to the population by randomly changing some of the integer values. Once a new

population has been created, the replacement operator then adds the individuals to the

new population. The process is repeated until the stopping criteria has been reached.

Several alternative grammars have also been used with grammatical evolution such as

attribute grammars [37], logic grammars [94], tree-adjoining grammars [132], and prob-

abilistic grammars [81]. As these approaches have not been explored in this thesis they

shall not be described in detail. The next section gives an explanation of how context free

grammars operate and why they were chosen as the basis for grammatical evolution.
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3.2 Context Free Grammars

A grammar is a mechanism for producing sets of strings [75]. A formal grammar consists

of a set of structural rules that define the composition of sentences or phrases in that

language. The components of a rule are called productions and they consist of terminal

and non-terminal symbols. Terminal symbols are literal characters in the language that

cannot be broken down into smaller parts by the rules of a grammar. Non-terminal symbols

are components of a language that can be replaced using the grammar rules.

Context free grammars are a subset of grammars in the Chomsky hierarchy that form

the theoretical basis of most programming languages. A context free grammar is formal

grammar where every rule is of the form:

A → α

where A is a single non-terminal and α is a string of zero or more terminals and zero or

more non-terminals.

In a CFG the production of a non-terminal rule is not dependent on the symbols that

surround it. CFGs allow components of a language to be easily grouped into larger modules.

The simplicity of CFGs and their ability to be easily and efficiently parsed means that they

are used to describe the structure of programming languages. The most common notation

used to describe a CFG in computer science is Backus-Naur form (BNF).

Backus-Naur form is a notation developed by John Backus and extended by Peter

Naur to represent context free languages [6]. It was originally developed for the Algol 58

programming language. The formal notation uses production rules that consist of terminal

and non-terminal symbols to express a context free language as a grammar. Terminal

symbols are literals in the language and cannot be changed using the rules of the grammar

whereas non-terminals are symbols which can be replaced in the grammar. The non-

terminal symbols are distinguished by using angle brackets, e.g., 〈non-terminal〉.

The rules in a BNF grammar are structured so that there is a non terminal on the left

hand side (LHS) of the rule and a combination of terminals and non-terminals on the right
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hand side (RHS) of the rule. Terminal symbols never appear on the LHS of a rule. If there

are multiple productions possible for a particular rule, these are separated by a vertical

bar. An example of such a rule is shown in Figure 3.2.

<A> ::= <B> | <C> | d

Fig. 3.2: A BNF grammar rule. The LHS is a non terminal 〈A〉 and the RHS is composed
of two non-terminal productions, 〈B〉 and 〈C〉, and a terminal production d.

In order to generate a sentence in the context free language represented by a CFG, an

initial non-terminal symbol is chosen as the start symbol. The symbol is then expanded

using its respective BNF rule. The process then continues iteratively, expanding the left

most non-terminal until all non-terminals in the derivation have been replaced by terminals.

If there are multiple productions for a rule then a methodology must be used to choose

that production. The approach used by GE for choosing rule production is described in

the next section.

3.3 Genotype to Phenotype Mapping

GE uses a mapping process to create output called the genotype to phenotype mapping.

The genotype to phenotype mapping is a terminology that has been adapted from the field

of biology. A genotype is an encoding upon which the evolutionary operators of mutation

and recombination act. A biological example of a genotype would be human DNA. Changes

to the genotype are translated into changes to the phenotype. A phenotype is an observable

characteristic of an individual. An example of this in humans would be eye-color or height.

Evaluation of the fitness is performed on the phenotype.

This biological concept was introduced to the field of EC as a method for separating

the search and solution space [8] and as a metaphor for describing the representations and

mapping processes. An illustration of this process is shown in Figure 3.3. The binary

string is analogous to the DNA double helix as both are responsible for defining the char-

acteristics of the phenotype. In the biological case, the information is used to determine
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the combination of amino-acids to be joined together to create a protein while GE uses the

information is used to select productions from a grammar to generate a program.
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Fig. 3.3: A comparison between the genotype to phenotype mapping in molecular biology
and in GE.

GE generates strings in a context free language by using a list of numeric values (called

a chromosome) to select the production choices for non-terminals. The numeric values in

the genotypic representation can be stored as either binary or integer values. The choice of

genotype representation has an effect on the algorithm, as shown by Hugosson et al. [87],

but this is not examined as integer representations are used exclusively in the investigations

of this thesis. Once all the non-terminals in a derivation have been mapped to terminals an

output string in that language has been generated. The output strings are the phenotypic

form of the individual. The phenotypes are computer programs that may then be executed

and evaluated by the fitness function.

The chromosome is made up of codons. Each codon in the chromosome is used to select

a production rule from a BNF grammar. A simple example BNF grammar that could be

used for symbolic regression is given in Figure 3.4. <expr> is the start symbol from which all

programs are generated. The grammar states that <expr> can be replaced with either one
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of <op> <expr> <expr> or <var>. The recursive nature of this rule allows the grammar to

represent an infinite number of expressions. The <op> rule has four possible productions

and replaces the non-terminal with an addition, subtraction, multiplication or division

operator. The <var> rule has three possible productions and replaces the non-terminal

with an x, y, or z terminal symbol that represents a variable.

<expr> ::= <op><expr><expr> (0)

| <var> (1)

<op> ::= + (0)

| - (1)

| * (2)

| / (3)

<var> ::= x (0)

| y (1)

| z (2)

Fig. 3.4: A simple BNF grammar.

The integer codons decide which production is chosen by computing the total number

of rule productions and using that number to calculate the modulus of the codon value.

This can be represented with the following formula:

Rule (idx) = Codon Value % Num. Productions (3.1)

The BNF rules are applied to the left most non-terminal with the respective codon

choosing the production, this process is continued until all non-terminals have been ex-

panded and a derivation tree is built. This process is shown in Figure 3.5. The terminals

at the leaf nodes of the derivation tree create a string from the grammar which, in turn,

represents the program.

In GE there are several stages in the mapping process, each with its own observable

characteristics. As each stage also contains a version of the final instantiation, it can be

classified as a phenotype. The four main phenotypic stages of the mapping process are

shown in Figure 3.6. The integer list is translated into a derivation tree using the BNF
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<expr>

<op> <expr> <expr>

+

<var>

<op> <expr> <expr>

44 % 2 = 0

16 % 4 = 0

63 % 3 = 0

23 % 2 = 1

28 % 2 = 0

46 % 4 = 2

85 % 2 = 1
*

<var>

<var>

X

10 % 3 = 1

73 % 2 = 1

92 % 3 = 2

Y

Z

<expr>

<op> <expr> <expr>

+ <var> <op> <expr> <expr>

* <var> <var>X

Y Z

Mapping Derivation Tree

Phenotype = + X * Y Z

0

1

2

3

4

5

6

7

8

9

Chromosome

Fig. 3.5: A mapped example using the sample grammar and the resulting derivation tree.

grammar defined in Figure 3.4 and the mod rule. The terminal production choices at the

leaves of the derivation tree are shaded green. The leaves form a string that represents

the program, in this example the program is an equation. The string is then evaluated to

produce the final output phenotype, in this case the equation forms a three dimensional

plot of a plane. The final stage of the process is the evaluation. The output is analysed

by a fitness function which returns a scalar value representing the quality of an individual

based on the criteria of the problem.

The mapping process described above is the canonical depth-first mapping approach.

Several alternative mapping methods have been explored such as breadth-first mapping [57],

bucket mapping [96] and a position independent mapping called π-GE [155]. As the canon-

ical mapping is used in the experiments in this thesis, alternative approaches are not de-

scribed in detail. The next section discusses approaches for initialising the population.
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+(-x(+y x))(+x y)

<e>

<o> <e> <e>

<o> <e> <e>+ <o> <e> <e>

<v>- <o> <e> <e> <v>+ <v>

X <v>+ <v> Y X

Y X

Genotype 

=G

String 

= P2

Output 

= P3

Derivation

tree = P0

42

z=

Fitness

    =P4

BNF Grammar

 

Fig. 3.6: The different stages of derivation in GE.

3.4 Initialisation

As the initial population form the basis of the remainder of the search execution, it is

important that they are widely distributed throughout the problem space. There are

several approaches for generating the initial population, this section describes the two

approaches used in this work.

The most direct approach to initialisation is to randomly generate the integers for the

chromosome. While this method is the simplest means of initialising a population it can

result in a skewed distribution of small trees [73, 115]. A grammar that requires a recursive
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rule to increase tree depth, such as the grammar shown in Figure 3.4, has a 50 % probability

of being expanded once, as there are only two productions. To get individuals of greater

tree depths requires the recursive rule to be chosen repeatedly, as such the probability of

greater tree depths decreases. Accordingly random initialisation should only be used for

grammars that have a maximum bound on the problem space and do not require recursive

rules to increase the depth of the program tree.

Ramped half and half (RHH) is the initialisation method used in traditional GP [103].

Initialising individuals using ramped half and half requires a grow and a full method. Both

methods create individuals that are not allowed exceed the maximum allowable depth.

The full method grows individuals until all the leaves are uniformly at the greatest

depth [159]. It does this by choosing non-terminal expansions until the maximum depth

is reached and then only chooses terminal rules. The grow method generates trees where

the maximum tree depth reaches the depth limit, i.e., the deepest leaf of the tree structure

reaches the depth limit [159]. The other branches on the tree are allowed vary their

depths. When the methods are applied separately they tend to generate a limited variety

of individuals so RHH uses both methods to initialise the population.

Individuals in GE can be represented using a derivation tree structure and adapted

grow and full methods can be used to initialise a GE population. While RHH can skew the

distribution of tree structures [73], it is still a suitable method for initialising individuals

where the tree depth is dependent on recursive rules for expansion. There are different

approaches to initialisation such as sensible initialisation [166] but these alternatives are

not explored in this thesis.

3.5 Operators

This section presents the different operations that are applied to the solutions by the evo-

lutionary algorithm. Operators in GE are normally applied to the genotype representation

before the mapping process occurs, except in cases where the operator is explicitly applied

to a phenotype. This approach differs from standard GP operators that are applied to the
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phenotype, i.e., the program tree. A description of the variation, selection and replacement

operators is now given.

3.5.1 Variation Operators

The variation operators are used to create new individuals out of an existing population.

They explore the search space by altering existing individuals and exploit components by

exchanging them amongst the population. The two variation operators used by GE are

described below.

Mutation

Integer mutation is considered to be an explorative operator that maintains genetic di-

versity by altering the values of the codons. Mutation in canonical GE is applied on a

per codon basis as opposed to a per chromosome basis so the mutation rate states the

probability for each codon changing value. As such it is traditionally set quite low. While

a mutation event in GP only effects a single node in the program tree, mutation events in

GE can alter the meaning of other codons in the chromosome [95, 32].

The mapping process in GE means that every codon is dependent on the values of the

codons that preceded it. If a codon is changed to a production of a different arity or if a

non terminal that follows a different derivation path is selected, the following codons can

change their meaning. The result of such a mutation is called the ripple effect.

An example of a ripple mutation event is shown in Figure 3.7. The codon at index four

is mutated. The production chosen by the codon is changed from <op> <expr> <expr>

to <var>. As the production is changed to a different non-terminal the expression of the

codon that immediately follows it now encodes for a <var> non-terminal instead of an <op>

non-terminal. The codons from index six onwards are no longer required as the arity of

the production changed from three to one.
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<expr>

<op> <expr> <expr>
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<var>
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Fig. 3.7: An example of a ripple mutation event in GE. The mutated codon is shown in
blue and the effected codons are highlighted in red and grey.

The implication of ripple mutation means that small effects at the genotypic level can

have a large impact at the phenotypic level. The impact of this event is dependent on the

placement of the codon in the chromosome. In the most extreme cases a ripple mutation at

the start of the chromosome could generate an entirely different tree. One of the primary

investigations of this thesis is an examination of the effects of ripple mutation and it is

explored in greater detail in Chapter 5.

Crossover

The intention of crossover is to act as an exploitative operator that exchanges information

between individuals in the population. Crossover in traditional GP involves transplanting

subtrees of the program tree from one individual to another. GE performs a similar action

by exchanging sections of the chromosome but as crossover is applied to the genotype,

different mappings can occur. Crossover in GE is more akin to GA crossover as it operates

on integer strings. Once two parents have been chosen for crossover, a point is selected on
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each of the parent chromosomes. The part on right hand side of the point is then swapped

with the respective part in the other parent chromosome. An example of this process is

shown in Figure 3.8.

Parent BParent A

<e>

<o> <e> <e>

- <o> <e> <e>

/ <v> <v>

X Y

<v>

Z

<e>

<o> <e> <e>

+ <o> <e> <e>

* <v> <v>

Y Z

<o> <e> <e>

<v> <v>

X X

+

<e>

<o> <e> <e>

- <o> <e> <e>

/ <v> <v>

X Y

<v>

Z

<e>

<o> <e> <e>

+ <o> <e> <e>

* <v> <v>

Y Z

<o> <e> <e>

<v> <v>

X X

+

45 24 36 74 26 30 16 19 46 89 56 16 35 4 5 2386 9 18 49 4 36 74 100 26 91 41 35 61 23 89 99

86 9 18 49 4 36 74 100 46 89 56 16 35 4 5 23 45 24 36 74 26 30 16 19 26 91 41 35 61 23 89 99

Phenotype = - / X Y Z Phenotype = + * Y Z + X X

Phenotype = + * Y Z ZPhenotype = - / X Y + X X

Child AB Child BA

Fig. 3.8: An example of crossover in GE. Half of the blue chromosome of parent A is
exchanged with half of the red chromosome of parent B.

As each codon depends on the values that preceded it during the mapping process,

crossover can result in a different expression of the codon values in a way similar to ripple

mutation. It has been shown that even though the expression of the derivation tree can

change, that it performs in a statistically identical way to a homologous crossover operator

and showed that it was not performing as a macro-mutation operator [145]. Harper and

Blair [74] further addressed this by implementing a crossover operator that only choose

points that preserve the derivation tree order. As single point crossover is used exclusively

for the experiments in this thesis, alternative crossover methods are not examined.
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3.5.2 Selection Operators

Selecting only the best individuals for variation is a greedy approach that results in con-

vergence on local optima. It is better to have a probabilistic approach that allows inferior

solutions to be occasionally selected as this broadens the variety in the population of so-

lutions. Two approaches to selection are now discussed in this section.

Roulette wheel selection compares the whole population simultaneously for each selec-

tion. Each individual is given a probability of selection proportionate to their fitness where

the sum of all the component probabilities is equal to one. This is analogous to the pockets

on a roulette wheel where the size of the pocket is dependent on the solution’s fitness.

Tournament selection only compares a subset of the population for each selection.

The tournament size is selected in advance by the experimenter. A subset of individuals

equal to the tournament size is selected at random from the population. The winner of the

tournament is the individual with the highest fitness and is selected for the new population.

The advantage of tournament selection is that it allows for the selection pressure to be

altered. A tournament size of one is equivalent to random selection while a tournament

size equal to the population size is equivalent to always selecting the best individual.

3.5.3 Replacement Operators

The iterative approach of evolutionary algorithms requires that individuals in the old

population are replaced with new individuals. Two common approaches to replacement are

steady state and generational. Steady state only replaces individuals in the old population

with individuals from the new population if their fitness is better than that of an individual

in the old population. Steady state maintains a population of good solutions to be selected

from and so has a higher convergence rate than generational replacement.

Generational replacement discards the old population entirely and replaces it with the

new population. The result is increased variance in the average fitness of the population,

as there is no assurance that the new individuals will be as fit as the old individuals they

replace. Generational replacement converges at a slower rate than steady state replace-
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ment and also requires some form of elitism, i.e., the best individual is added to the new

population without any variation. Elitism prevents the EA from “losing” the best solution

it has found during the run.

3.5.4 Alternative Search Engines

An evolutionary algorithm is one possible approach to searching problem spaces. The

modular nature of GE allows for the evolutionary algorithm to be substituted with an

alternative algorithm without having to redefine the grammar or change the experimental

setup. Several alternatives search engines have been used such as the particle swarm

algorithm, called grammatical swarm [142] and grammatical differential evolution [139]

based on the differential evolution algorithm [182].

3.6 Summary

This chapter described the canonical form of grammatical evolution. A brief overview of the

algorithm was given which was followed by a detailed description of context free grammars

and the structure of BNF notation used by GE. The mapping process was explained and

an example mapping was carried out. Initialisation of the algorithm and the operations

carried out by the algorithm were then described in detail. The remainder of this thesis

now examines the application of GE to architectural design exploration.
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Chapter 4

An Automatic Fitness Function for

Design Evaluation

4.1 Introduction

This study evolves and categorises a population of architectural designs by their ability to

handle physical constraints. The design of a structure involves a trade-off between form

and function. The aesthetic considerations of the designer are constrained by physical

considerations and material cost. The objective nature of engineering constraints lend

themselves to implementation as an automated fitness function and allow a design to be

optimised accordingly [99]. This work implements a fitness function that applies engineer-

ing objectives to automatically evaluate designs, as shown in Figure 4.1. Automating the

evaluation process reduces the search space as only feasible designs are presented to the

user.

Architectural design is more restricted than other forms of artistic design. For example,

an architectural design must be functional as well as structurally sound. The constraints

placed on architectural design provide an opportunity for the evolutionary algorithm as

they can be represented as a fitness function and optimised accordingly. The approach is

similar to the work described in Ventrella [192] as only “plausible” designs that meet the
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constraints are presented to the user.

Combining the conceptual approach of computer generated architectural design with

an automated fitness function has two main advantages. First, designs can be optimised

to increase their functionality and strength while reducing the amount of material used.

This will, in turn, make the designs more credible and realisable. Second, assigning an

objective fitness rank to a design also provides a mechanism for clustering designs based

on how well they fulfill the objectives [121]. The different clusters could further reduce the

search space: if a user has a distinct aesthetic preference for a particular cluster then the

algorithm can accelerate convergence on these aesthetically pleasing designs.

Inital 

population

Selection

User

Evaluation

Automated

Evaluation

 

Operators

Stress / Load

Material Used

Final

Design

Fig. 4.1: An automated fitness function reduces the search space presented to the user.

This chapter is organised as follows. Section 4.2 gives a description of the approach

taken for design generation and analysis. Section 4.3 investigates if designs can be optimised

by a fitness function based on conflicting engineering constraints. Section 4.4 examines if

the fitness values can be used to group the resulting designs. The conclusions are discussed

in Section 4.5.

4.2 Overview of System and Grammar

This section describes the software used and the approach taken to generate and struc-

turally evaluate designs. The experiment was run using Architype, an interactive design

generation tool based on GE. Architype is based on PonyGE version 1.3, a Python imple-

mentation of GE that can be downloaded from the Google code website [80]. The system

used in this experiment is comprised of four parts: an evolutionary algorithm, a design
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grammar, structural analysis software and a multi-objective fitness function. A diagram

of the system is shown in Figure 4.2.

The system was designed to be applied to practical problems. Accordingly, a structural

engineering class project was chosen as the problem. The design brief for the project can

be found in Appendix B. A brief explanation of how the system was implemented is now

given.

Generate Designs

Analyse Designs

Automatic Evaluation

Initial

Population

Operators

Design

Grammar

Structural Analysis

Multi-Objective

Fitness Function

Stop Criteria

Terminate

User Evaluation

Structural

Stress

Material

Used

Selection

User Interface

Fig. 4.2: The different stages of design generation.

4.2.1 Design Grammar

The grammar used in this experiment describes a rule system for generating bridges. It was

originally conceived based on a brief provided to the third year architecture and structural

engineering course of 2010. The students were tasked with designing a footbridge for the
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St. Mullins archaeological site in county Carlow. The brief specified that the bridge was

to be composed of timber, had an optional arch (rise height 0 to 2 metres), a width of 2

metres and bridge a span of 10 metres. Even though the grammar was created with no

consideration for the structural soundness of the design phenotypes, applying a load allows

us to judge the performance of the bridge relative to other bridges generated by the same

grammar.

The grammar used to generate the bridges is shown in appendix A. The grammar cre-

ates graphs using networkx [72], a Python class for studying complex graphs and networks.

The bridge designs are stored as undirected graph objects from the networkx class. Each

graph consists of nodes and edges. Every node has a Cartesian coordinate attribute and

a placement attribute describing what bridge component the node forms a part of, e.g.,

walkway, handrail, etc. The placement attribute was used to apply loads to the structure

as is explained in more detail below.

Three desirable characteristics for a design generator are modularity, regularity and

hierarchy [86]. These characteristics were implemented using the novel method of higher

order functions. The work in this area is discussed in greater detail in [126] and is described

in chapter 2. For structural analysis to be performed on the bridges, a mechanism was

required that allowed for loads to be applied to the structure.

The approach used in this experiment was to add attributes to the existing gram-

mar. This allowed us to label components depending on the function that created them.

Labelling meant that forces representing the loads could be assigned to the structures au-

tomatically and accordingly, that different forces could be applied to different parts of the

bridge. An example of a loaded bridge can be seen in Figure 4.3. Now that the grammar

for generating bridges has been introduced an explanation of how structural analysis is

performed on the bridge phenotype is given.
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4.2.2 Structural Analysis

The analysis of structures as computable models is accomplished by using Finite Element

Methods that were described in detail in Section 2.3.1 on page 22. Instead of calculating the

partial differential equation for a whole design, a continuous structure is discretised into an

approximating system of ordinary differential equations. The approximation can then be

solved using numerical approximation methods for differentiation such as Euler’s method

or the Rung-Kutta method. The designs generated by the algorithm are particularly suited

to Finite Element Analysis (FEA) as the structures are already discretised into a series

of interconnected beams. To analyse the generated designs, San Le’s Free Finite Element

Analysis (SLFFEA) [107] was used. This software is freely available for download and

has been used by engineering companies in industry. It is built on the Unix philosophy of

minimalism, modularity and efficiency and, as such, it allows us to analyse the structures

with great speed.

Structural optimisation is classified into three categories: topology, shape and sizing.

Our work focuses on the topological and shape optimisation components of structural

optimisation, as described in Section 2.3.1 on page 22. This is possible as GP can evolve

structure and content simultaneously. This work does not examine sizing optimisation

as the task was constrained by the design brief. The same fixed sizing was used for the

wooden beams and the same material that the students used to build their entries. The

modular nature of implementation for this experiment and the use of a design grammar

does not rule out the possibility of evolving all three simultaneously, although it would

greatly increase the combinatorial possibilities for a design.

The networkx graph objects were parsed into the SLFFEA data structure and output

to a file. The data structure specifies the type of material used, the placement of the

nodes, the edges and their respective loads. As the graph objects were being parsed, the

total Euclidean length of the edges was calculated. The total edge length combined with

the beam dimensions allows us to compute the amount of material used, thus providing a

second fitness value for the bridge.

64



4.2. OVERVIEW OF SYSTEM AND GRAMMAR

Fig. 4.3: Different magnitudes of stresses being applied to the handrail and walkway.

SLFFEA calculates the displacement for each element and returns the compression and

tension forces of the x, y, and z planes for each element. To generate a fitness value from the

analysis, we compute the average compression and tension on the structure. The average

stress, c, is calculated in Equation 4.1 and the material used, m, in Equation 4.2, where

B = {Beams}, |b| = is the Length of beam and κ is the area of the cross-section.

c =

∑

b∈B bx + by + bz
∑

b∈B |b|
(4.1)

m =
∑

b∈B

|b| · κ (4.2)

One disadvantage of optimising a structure to reduce stress is that it can be easily

reduced by increasing the amount of material used. To prevent individuals from adding

redundant beams the overall length can be used as a second fitness values.

Two conflicting constraints can generate a fitness value if they are weighted. The limi-

tation of weighting is that the evolutionary algorithm will quickly converge on individuals

optimised to a specific weighting. It also requires that correct weights are known apriori. A

better approach is find individuals that are good compromises. To do this a multi-objective
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fitness function was implemented. How it was implemented is discussed in the next section.

4.2.3 Multi-Objective Fitness Function

Design involves satisfying several objectives that may conflict with each other [173]. Multi-

objective evolutionary algorithms (MOEAs) have been shown to be a useful approach for

finding the best compromise when tackling a multi-objective problem [201]. Instead of

weighting the objectives and allowing an evolutionary algorithm to converge on a single

global optimum, the algorithm builds a pareto-front of the individuals that maximise the

given objectives. A pareto front shows the individuals that best compromise the conflicting

objectives, if the objectives were to be weighted equally. Using fronts can aid the design

process by presenting the user with several pareto-equivalent designs and letting them

select the design that most closely matches their requirements.

The two structural objectives that were chosen to minimise were stress under loading

and the amount of material used. These objectives conflict as the overall stress on a

structure can be reduced by adding redundant material. It is possible for the MOEA to

generate a pareto front based on aesthetic constraints such as smoothness, curviness, etc,

but this possibility is not explored in this thesis.

A GE implementation of the non sorting genetic algorithm II (NSGA2) [46] was used as

the selection and replacement mechanism. For each generated structure two fitness values

are assigned, one based on the amount of material used and one based on how well the

structure endures a given load. A more detailed description of the objectives is given in

Section 4.3.

Multi-objective search algorithms do not assume there is a globally optimal solution

but instead there are a set of non-dominated solutions. The non-dominated solutions are

solutions that are better than the rest of the population for at least a single constraint and

at least equivalent for all other constraints. This can be stated mathematically as:

f is the set of fitness functions: f = [fo, . . . , fn] such that ∀f ∈ f where fnon−dom ≤ f dom

and ∃f ∈ f wherefnon−dom < f dom
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The NSGA2 algorithm uses a selection operator called the fast non-dominated

sort. First, the non-dominated individuals in the population are found. The set of non-

dominated solutions form what is called the pareto front. Substituting one solution for

another on the pareto front will always sacrifice quality for at least one constraint, while

improving at least one other. Once the initial grouping of globally non-dominated indi-

viduals is found, it is used to calculate the next least-dominated set of individuals. The

process is continued until every individual in the population is in a front. The individuals

in each front are dominated by the preceding front.

Normally multi-objective applications are only concerned with the individuals on the

pareto front. The intention of Section 4.4 is to investigate whether the grouping property

of the fronts in the NSGA2 algorithm could also be of benefit for guiding the search

process. This section explained how the bridge designs are generated and evaluated, it is

now examined in the next section if the designs can be optimised by using an evolutionary

algorithm.

4.3 Optimising Designs using Structural Analysis

The first experiment was designed to test whether an evolutionary search is capable of

generating designs that minimise the stress in a structure and reduce the amount of material

used. As each objective is weighted equally there is no “best” individual in the population.

Instead we evaluate the average fitness of the population and see if there is an observable

improvement for each of the objectives. Fitness minimisation is fitness improvement in this

experiment and throughout this thesis. A control population was generated to examine if

the evolutionary process increased the rate of convergence.

The control population is different from a purely random search. The NSGA2 algo-

rithm has a built in selection pressure that compares parent and child populations. This

selection pressure alone could account for an improvement over time of a randomly gen-

erated population. To examine if beneficial information was being transferred between

generations, the same selection scheme was used for both the control population and the
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evolved population. The difference with the control population is that the individuals in

the child population were randomly initialised rather than being created from the parent

population. Random initialisation meant that no genetic information was transferred from

generation to generation.

4.3.1 Hypothesis

The experiment compares the results for two objectives µ and ν, where µ represents the

average stress and ν represents the amount of material used. Given the average fitness of

an evolved population for each objective, µ1 and ν1, and a randomly generated population,

µ2 and ν2, after 50 generations, the following hypothesis is stated:

H0 The average fitness of the population does not differ significantly with respect to the

either the material constraint or the load reduction objective, µ1 = µ2 and ν1 = ν2

H1 There is a statistically significant difference with respect to one of the fitness values

µ1 < µ2 or ν1 < ν2

H2 There is a statistically significant difference with respect to both fitness values µ1 < µ2

and ν1 < ν2

α The significance (α) level of the Wilcoxon rank-sum is 0.05.

4.3.2 Setup

The experiment was carried out using the implementation described in Section 4.2 and

the bridge grammar described in Section 4.2.1. The experimental settings are shown in

Table 4.1. It should be noted that mutation in GE is applied on a per codon basis.

The material from which the bridge was constructed was small scale air dried oak

sections with a moisture content of 20% or more. The structural qualities of this wood

were taken from the British Standards BS-EN-338-2003 as a grade D30 class of timber [26].

The material qualities were then assigned to the bridge beams for SLFFEA analysis. For
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Tab. 4.1: Experimental settings.

Parameter Value

Population Size 500
Generations 50
No. of Runs 30

Mutation Rate 1.5%
Mutation Operator Integer
Crossover Rate 70%

Crossover Operator Single Point
Selection Scheme NSGA2

Replacement Scheme NSGA2
Initialiser Random
Wrapping off

Random Number Generator Mersenne Twister

stresses on a structure to be calculated, fixed points and loaded beams must be assigned.

Normally this is done manually by the user. The implementation for this experiment

automated the task by using attributes in the grammar, as described in Section 4.2.1.

While the experiment tried to replicate a load that a bridge might be subjected to during

actual usage, the main purpose was to compare how well the bridges performed relative

to other bridges also generated by the design grammar. The bridges were subjected to a

uniformly distributed load (UDL) of 5kN/m upon the walkway itself and a separate 1kN/M

load was applied to the handrails. The loads for the bridge were taken from [58].

There were two constraints placed on the designs, one of which was stress based and

one that was based on material usage. The stress objective is based on the normalised

compression and tension values generated by SLFFEA and given by Equation 4.1. If a

beam failed then the bridge was assigned a default fitness of 100,000, the worst possible

fitness. This meant that high stress designs were removed from the population and the

fitness pressure aimed to reduce stresses over the structure as a whole.

The material constraint aimed to reduce the number of beams used in a structure. This

fitness metric is opposed to the stress constraint as one method for reducing the average

stress on the beams is by adding more unnecessary beams. By adding a penalty for the
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total weight of material used, it can force the algorithm to simplify the design. Reducing

the total weight of material used also translates into direct savings when manufacturing

an instance of the design.

4.3.3 Optimisation Results

The results for the experiment are shown in Figure 4.4. In these graphs, minimisation is

fitness improvement. As there is no global best individual for a multi-objective problem,

the analysis instead examines the mean fitness of the population. Thirty independent runs

were carried out for both the control and evolved populations. The results obtained showed

that there is a reduction in the average amount of materials of 24% (Figure 4.4(a)) and

a reduction of the average load placed on the structure of 44% (Figure 4.4(b)) after 50

generations.

To investigate if this improvement was due to the evolutionary algorithm or whether

it was a result of the selection pressure from the NSGA2 algorithm the analysis compared

the evolved results with the control results. A Wilcoxon rank-sum was performed between

the random and evolved results for both length and stress and both were shown to have

a p-value of less than 2.2 × 10−16. The result shows there is a statistically significant

difference between the two samples and so the null hypothesis can be rejected. Although the

evolutionary algorithm outperformed the control population, it is interesting that selection

pressure in the NSGA2 algorithm alone managed to reduce the amount of material used

by 16% and the average stress by 14.5% respectively.

The results show that using structural analysis and an MOEA in combination with an

evolutionary algorithm can significantly reduce the stresses and self weight of a design.

The findings support the second hypothesis that multiple objectives can be optimised

simultaneously. Figures 4.5(a) and 4.5(b) show a density plot of the individuals of a

population at generation 0 and generation 50 respectively. The x axis represents the stress

fitness and the y axis represents the amount of material used. The darkness of the color

represents the density of the population at that point. While the individuals are still
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Fig. 4.4: The fitness minimisation average of the population over 50 generations.

distributed over a wide are at both generation 0 and generation 50, it is clear that main

population concentration and the pareto-front are moving toward a pareto-optimality over

the course of 50 generations.

4.3.4 Discussion

This is the first implementation of GE that uses a multi-objective fitness function based

on pareto dominant selection. The experimental results demonstrate that it can function

as a selection scheme for GE. This is a promising advance as the NSGA2 algorithm has

proved itself capable of being applied to many different types of multi-objective problems.

Combining NSGA2 with also allows multi-objective selection and replacement to be applied

to complex problems that are represented by a mapping.

The results show that the system is capable of evolving structures that increasingly sat-

isfy the constraints specified in the multi-objective fitness function. This is very important

when progressing a design from a conceptual stage to something that is instantiable. This

is a process that engineers and architects face on a daily basis. After using the NSGA2
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Fig. 4.5: Scatter plot with a density estimation function that shows the progression of front
over 50 generations.

for optimisation, the next section explores if the NSGA2 algorithm could also be used for

categorising the designs based on how well they meet the objectives.

4.4 Categorising Designs using Structural Analysis

While optimisation plays a significant part in the design process, design is not purely about

optimisation. The intention in creating an evolutionary design tool is not to exclusively

optimise designs but to allow the architect to explore the design search space. To this end,

it is imperative to bias the algorithm towards designs that the user finds interesting and

appealing. A feature of the NSGA2 algorithm is that it categorises the individuals based

on how well they conform to the objectives while building a pareto front of the population.

These categories could provide a means of reducing the search space presented to the user.

The experiment carried out in this section uses the NSGA2 algorithm to group the

bridge designs by instantiability, i.e., how easily they can be created. The NSGA algorithm

calculates the globally non-dominated individuals to show the first front and then uses these

individuals to define each successive front. This process is shown in Figure 4.6.
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(a) Front 1. (b) Front 2. (c) Front 3. (d) Front 4.

Fig. 4.6: Each front is used to define the next one.

The groupings created by the fast non-dominated sort are shown in Figure 4.7. The

population is broken into sub-populations based on their relative fitness. If the user finds

designs that optimise the constraints to be more aesthetically appealing, then selection

pressure could be applied to drive the pareto-front in this direction. Categorising designs

by their place on the fitness landscape allows us to accelerate convergence onto more

appealing areas of the search space. The experiments in this section seek to examine if the

user finds objectively fit designs aesthetically pleasing.

4.4.1 Hypothesis

Given a set of user preferences for one of two design groupings, µ0 and µ1, that were

categorised based on how well the fulfilled the physical design constraint, the following

hypothesis is stated:

H0 The users will have no significant preference for either group, µ0 = µ1

H1 There is a statistically significant user preference for a particular grouping, µ0 6= µ1,

α The significance (α) level of the binomial test is 0.05.

4.4.2 Setup

The settings for this experiment are the same as described previously except that the

experiment shows the user the results of applying the non-dominated sort to the first
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Fig. 4.7: An instance of the fronts produced by the NSGA2 fast non-dominated sorting
algorithm.

74



4.4. CATEGORISING DESIGNS USING STRUCTURAL ANALYSIS

generation of individuals. The reason for this is that the selection pressure of the evolu-

tionary algorithm focuses the population towards the pareto front, as highlighted in the

difference between Figures 4.5(a) and 4.5(b), and converges on a small subset of globally

non-dominated individuals. Using the first generation allows for greater variation in the

population and an increased likelihood of a user perceivable difference between the differ-

ent fronts. The experiment randomly selected designs from the first two fronts and the

last two non-empty fronts. To generate images of the designs, an open source mesh viewer

called medit [61] was used. Medit was developed by INRIA as part of the finite element

analysis program, freeFEM[158]. An example of the output can been seen in Figure 4.8.

An online survey was then conducted on the designs. The survey consisted of presenting

two designs, side by side, as shown in Figure 4.9. The question presented to the user was

“click on the design you find most aesthetically pleasing or on no preference if you have no

preference”. The wording of this question is important could have a significant effect on

the result. For instance, if the user was asked which bridge they preferred, their personal

preference could have been for a simpler yet less aesthetically impressive design. As the

intention of the experiment was to segment the designs with the greatest visual impact,

the question as stated above matched that criteria.

The user had to evaluate 100 comparisons. If the user had no preference for a particular

design they can indicate this with the no preference button. The presentation of the images

were randomised so that there was no bias for which side the images appear on. There

was no time limit set for how long the users had to complete the survey. The survey

was carried out by post-graduate computer science students and undergraduate volunteers

from the school of architecture. The latter group was chosen because of their expertise in

architectural design. As undergraduate students are considered a vulnerable group, this

survey was authorised by the ethics committee and the head of the school of Architecture

(reference number: LS-E-10-159-Byrne-ONeill).
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Fig. 4.8: Sample bridges from the survey.

Fig. 4.9: The layout of the survey.

4.4.3 Categorisation Results

The survey was completed by 28 individuals and consisted of 2800 evaluations. The results

for the survey are shown in Figure 4.10. The users showed a preference of 55.9% for bridges

that were highly dominated compared to a 36.84% preference for non-dominated bridges

on the pareto front. The users had no preference on 7.26% of the designs. Although the

user had three categories to select from, the instances where the user had no preference

are ignored as they provided no indication of a bias towards either group.

A binomial test for significance was performed on the two groups where users had
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expressed a preference. The binomial test assumed that the distribution for the null hy-

pothesis was 0.5, i.e., that the users had a 50% chance of selecting one group over the other.

The result returned a p-value of less than 2.2×10−16 meaning that the survey results were

statistically significant and that the null hypothesis was rejected. These results show that

users had an aesthetic preference for designs that do not fulfill the engineering constraints.

4.4.4 Discussion

Although objective fitness functions have been successfully used for evolving aesthetically

pleasing designs [118, 153, 192], the use of physical constraints did not generate aesthetically

pleasing bridges. Putting functionality first did not result in interesting forms. The results

imply that the physical constraints that were chosen for this experiment did not match

the aesthetic preferences of the survey participants. Although aesthetic preference is a

predominantly a subjective quality, the inclination towards unconstrained designs could

be because of their unusual and unexpected configurations rather than the “ordinary”

nature of structurally sound designs. The results indicate that grouping images by fast

non-dominated sort creates two distinct categories.

The users preferred the designs that were not on the pareto front. What this means

is that only presenting the user with individuals from the pareto front would excessively

inhibit exploration of the search space. The user should be allowed to explore the possi-

bilities first and then their chosen designs should be optimised rather than reducing the

search space based on the objective constraints.

4.5 Conclusion

Design can be described as a purposeful yet explorative activity [63]. When architects

design, they do more than simply optimise. Initially the designer must explore the search

space to find a concept or form that is capable of fulfilling the design specification. Once

the form has been chosen, the design process focuses on satisfying the constraints of the
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Fig. 4.10: Designs that were not on the pareto front were preferred by the users.

original design specification.

At the centre of this process there is a conflict between form and function. The heuristics

an architect uses to evaluate a design are not the same as a structural engineer. Architects

evaluate all aspects of the design, from broader issues of internal and external relationships

to more detailed aesthetic measures such as material use, texture and light.

By eliminating designs that are less instantiable the design space presented to the user

is reduced, but it also reduces the algorithm’s capacity for design exploration. Accordingly,

the intentionality of the architect should direct the search from the beginning of the search

process. The application of an automatic fitness function is more suited for application

during the later stages of design. The design selected by the architect would be developed

into a more realisable form by optimising the physical constraints.

In this chapter material and physical constraints were encoded into a fitness function

and it was shown to be a suitable methodology for evolving conceptual designs towards

those objectives. This is a step towards making conceptual designs more realisable. It was

also shown that multi-objective fitness functions are suitable for more than optimisation.
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The NSGA2 algorithm allows for designs to be grouped into distinct categories based on

their instantiability, although the categories preferred by the user are not on the pareto-

front.

Using an automated fitness function based on physical constraints is beneficial for

optimising designs but reduces the search space too much for design exploration. If it was

possible for the users to direct search to areas of interest, this could provide a mechanism for

design exploration. The following chapter explores this possibility by examining mutation

in detail with the intention of developing user operators for directing search.
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Chapter 5

An Analysis of Mutation in

Grammatical Evolution

The intention of this thesis is to analyse the GE algorithm and to apply GE to architectural

design. To this end, a study of traditional GE operators is performed with the intention

of developing operators that could be used by the designer to direct search. The use

of an automated fitness function showed that designs could be optimised using physical

constraints but it did not provide a means of exploring the search space. The goal of

developing user operators is to allow the user to vary their preferred designs and explore

the surrounding search space.

This study decomposes the behaviour of mutation in Grammatical Evolution and ex-

amines the effect of mutation on fitness. Standard integer mutation in GE can be divided

into two types of events, those that are structural in nature and those that are nodal. A

structural event alters an internal node of a derivation tree whereas a nodal event simply

alters the value of a terminal node of a derivation tree. The experiments carried out in

this chapter analyse standard integer mutation and compare the behaviour of its nodal

and structural components. This study increases the understanding of how the search

operators of an evolutionary algorithm behave.

Much attention has been directed towards the behaviour of crossover in grammatical
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evolution due to the traditional importance placed on this search operator in Genetic

Programming in general, e.g., [103, 140, 146, 74]). However, there has been little analysis

of the behaviour of mutation on search in GE. Two papers that have explored mutation

events in GE are the study by Rothlauf and Oetzel [165] on the locality of binary mutation

and the study by Hugosson et al. [87] comparing the performance of different mutation

operators on binary and gray code genotype representations. This study extends previous

research by examining the different behavioural components of standard integer mutation

and exploring how these components move the solution through the search space.

Locality - how well neighbouring genotypes correspond to neighbouring phenotypes -

has been described as a key element in Evolutionary Computation [114]. It is critical

to understand how the behaviour of mutation effects locality so that more efficient search

operators may be designed. This study explores this important research gap by conducting

an analysis of the behaviour of GE’s mutation operator. This work examines what types of

change occur on the phenotype during a mutation event and their impact on evolutionary

performance.

The remainder of the chapter is structured as follows. Firstly, the related research in this

area is discussed in Section 5.1. An analysis of the different behaviours of integer mutation

in GE is undertaken in Section 5.2. We define two different types of mutation events,

nodal and structural mutation, in Section 5.3. The procedure, grammar and settings for

the benchmark problems used in this experiment are discussed in Sections 5.4.1 and 5.4.

The nodal and structural mutation operators are applied to the benchmark problems to

examine their effect on fitness in Section 5.5. A detailed examination of individual mutation

events is then conducted in Section 5.6. The conclusions are discussed in Section 5.7.

5.1 Related Research

Locality is a metric that describes the similarity between genotypic and phenotypic neigh-

bourhoods [164]. If a metric can be applied to a representation then the distance between

two individuals using that representation can be computed. Two individuals are neighbours
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if their distance is minimal. Locality compares if neighbourhoods remain consistent after

one representation is mapped to another. A mapping is local if neighbourhood is preserved

under that mapping [114]. The definition of locality assumes that a distance measure exists

on both genotype and phenotype spaces, and that for each there is a minimum distance,

and that a neighbourhood can be defined in terms of minimum distance.

Rothlauf’s research distinguished two degrees of locality: high and low locality. A

representation has high locality if all neighbouring genotypes correspond to neighbouring

phenotypes. On the other hand, a representation has low locality if many neighbouring

genotypes do not correspond to neighbouring phenotypes. Low locality is undesirable in

an operator as it is akin to random search. Rothlauf demonstrates that a representation

that has high locality is necessary for efficient evolutionary search.

There has already been some investigation into locality in GE. The locality study by

Rothlauf and Oetzel [165] on binary mutation investigated how binary changes in the

genome impacted the derivation tree. It was found that in some cases (less than ten

percent of the time) mutation events can result in small changes to the genotype resulting

in not so small changes to the structures generated. More specifically, given a single unit

of change at the genotype level (i.e., a bit flip), changes of greater than one unit of change

at the phenotypic tree level occurred approximately ten percent of the time. 14% of these

had a distance of greater than 5 units at the tree level. A unit of change at the phenotypic

tree level corresponded to tree edit distance calculations which included deletion (delete

a node from the tree), insertion (insert a node into the tree) and replacement (change a

node label) change types.

Rothlauf also states that 90% of the time mutation has no effect due to the many-

to-one mapping adopted in GE, although this is highly dependent on the representation

used. The many-to-one mapping allows multiple codon values to correspond to the same

production rule choice. Encoding a rule with two possible productions using an eight bit

codon means seven of the eight bits are redundant. Only mutating the least significant bit

would have any effect on rule choice. This would reduce the effective rate of mutation is

reduced from 50% (for an integer encoding) to 12.5%.
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This study was extended by Hugosson et al. [87] to compare the performance of binary

and integer forms of mutation. Their work showed that using an integer encoding on

certain problems produced significantly different results to a binary encoding. It is not

clear how invalid phenotypes (i.e., phenotypes that are incompletely mapped containing at

least one non-terminal symbol) were handled in Rothlauf and Oetzel’s study. It is possible

that any remaining non-terminal symbols were treated as different node content values in

the tree distance calculations, but this is not exposed in their study.

In this chapter attention is turned to what is occurring when a unit of change arising

from mutation at the genotype level is not perfectly correlated with a unit of change at the

phenotype level. This work intends to establish if it is possible to design a mutation-based

search operator that exhibits better properties of locality and search than is currently

adopted. The next section defines different types of mutation event in GE.

5.2 A Component-Based View of Mutation in GE

In order to expose the impact of mutation on derivation tree structure a simple grammar

a simple grammar is designed that uses binary rule choices. This allows us to condense

codons (elements in the string representing the individual) to single bits. Below is a simple

binary grammar which might be used in the case of application to a symbolic regression

type problem with two variables (x and y).

<e> ::= <o><e><e> (0)

| <v> (1)

<o> ::= + (0)

| * (1)

<v> ::= x (0)

| y (1)

Fig. 5.1: A simple binary grammar for creating functions.
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This allows for the creation of genomes with binary valued codons to construct sentences

in the language described by this grammar. Consider all genomes of length two codons (22

of them) and draw an edge between genomes that are a Hamming distance of one apart. If

the corresponding partial derivation trees resulting from those genomes are presented as a

graph the arrangement outlined in Fig. 5.2 can be seen. In this particular example we see

that a mutation event at the first codon corresponds to a new derivation tree structure.

Here a new derivation tree structure is defined as being one that has changed in length,

i.e. , it contains a different amount of non-terminal symbols than its neighbour. Mutations

from 00 to 10 (and vice versa) and from 01 to 11 (and vice versa) result in these structural

changes, whereas the remaining mutation events result in node relabelling.

Fig. 5.2: The 2D neighbourhood for the example grammar (i.e., using the first two codons).

Extending the genomes by an additional codon the Hamming neighbourhood between

the 23 genomes can be visualised both in terms of genome codon values and partial phe-

notype structures. These are illustrated in Fig. 5.3. Again, there is a clear distinction

between mutation events that result in structural and non-structural modifications.

Mapping these codons back to the grammar it can be seen that structural mutations

occur in the context of a single non-terminal symbol, <e>. It can be seen from this

grammar that this non-terminal alone is responsible for structural changes, as it alone can

increase the size of the developing structure. The rules for the <o> and <v> non-terminals

are non-structural as they simply replace an existing symbol without changing structural
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Fig. 5.3: The 3D neighbourhood for the example grammar (i.e., using the first three
codons).

length. Another instance of this is shown in Figure 5.4. Both figures 5.4(b) and 5.4(c)

are mutations of Hamming distance one from Figure 5.4(a). While the nodal mutation in

Figure 5.4(b) changes only one leaf, the structural mutation in Figure 5.4(c) adds a whole

new subtree.

<var>

<op>

<expr>

<expr>

+

x

<var>

<expr>

y

(a) Original.

<var>

<op>

<expr>

<expr>
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(b) Nodal mutation.

<var>
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+

x

y

<op> <expr><expr>

<var>

y

+

(c) Structural mutation.

Fig. 5.4: Nodal (green) and structural (blue) nodes of a derivation tree.

It should be stated that it is possible to generate a grammar consisting entirely of nodal

rules or of structural rules that map deterministically to nodal rules but this negates the

point of using a grammar. The grammar allows for abstraction and modularity through
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the use of non-terminals. A grammar naturally forms a hierarchy of abstractions based

on these non-terminals. What this chapter intend to investigate is whether mutating the

abstractions or the literals can effect how the algorithm navigates the search space.

5.3 Definition of Nodal and Structural Mutation

The previous section highlighted two different component behaviours of integer mutation.

Based on these findings, this section defines the component operators of integer mutation.

Before nodal and structural mutation can be defined, context free grammars and GE’s

mapping process must be defined.

Definition 1 (Codon) c is an integer value that is used to select the production for a

rule, where c ∈ Z

Definition 2 (Chromosome) C is a finite list of length n that is composed of codons.

C = (c1, c2, .., cn) where c1, c2, .., cn are codons

A Context-Free Grammar is a formal grammar where the rewriting of a non-terminal

symbol is not dependent on the surrounding symbols. [22, 75]. GE uses codons to select

rules from a CFG.

Definition 3 (GE Context-Free Grammar (GE-CFG)) A GE-CFG is a four tuple

G = 〈N,Σ, S, R〉, where:

• N is a finite non-empty set of non-terminal symbols.

• Σ is a finite non-empty set of terminal symbols. N ∩Σ = ∅, the empty set. Σ∗ is the

set of all strings constructed from Σ and V ∗ is the set of all strings constructed from

N ∪ Σ

• S is the start symbol, S ∈ N .
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• R is a finite set of rules such that rA : C → V ∗ : rA(c) = αi where A ∈ N , αi ∈ V ∗,

αi is the ith production of rA, i ∈ Z, 0 < i ≤ k, where k is the number of productions

for rA and rA ∈ R.

The derivation process begins with the derivation equal to the start symbol. It expands

the leftmost non-terminal iteratively until the derivation contains no non-terminals.

Definition 4 (Derivation) the derivation δ = αAβ where:

• α ∈ Σ∗, A ∈ N , and β ∈ V ∗, A is the leftmost non-terminal (LMNT)

• δ0 = S (i.e. α = β = ∅)

• for 0 < i ≤ n there exists δi = αiAiβi

• for each step of the derivation 0 < i ≤ n : the LMNT of the derivation is rewritten

using the codon at index i, such that δi+1 = αrA(ci)β

Then nodal rules are the subset of rules where the productions of a rule only consist of

terminal symbols.

Definition 5 (Nodal Rule) The set of nodal rules RNodal ⊆ R is defined as RNodal =

{rA ∈ R : rA(c) = αi ∈ Σ∗ ∀c ∈ Z}

The structural rules are the subset of rules where at least one production includes a non-

terminal.

Definition 6 (Structural Rule) The set of structural rules RStructural ⊆ R is defined as

R \RNodal.

A mutation event changes the value of a codon in a chromosome.
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Definition 7 (Mutation Event) A mutation event occurs at codon index i when the

mutation functionM is applied to ci ∈ C such thatM(C) = C ′ where C = (c1, c2, .., ci, .., cn)

and C ′ = (c1, c2, .., c
′

i, .., cn)

Using the definitions above, standard GE mutation can be divided into two types of events,

those that are structural in nature and those that are nodal.

A nodal mutation changes the value of a codon at index i that encodes for a nodal rule,

thus changing the production value for that rule.

Definition 8 (Nodal Mutation) The mutation event at ci is a nodal mutation event if

the LMNT is rewritten such that Ai 7→ rA(ci) where rA ∈ RNodal

Definition 9 (Structural Mutation) The mutation event at ci is a structural mutation

event if the LMNT is rewritten such that Ai 7→ rA(ci) where rA ∈ RStructural

Effectively the behaviour of mutation can be decomposed into two types of events.

The first are events that are structural in their effect and the second are those which are

nodal in their effect. We could consider both types of events as operators in their own

right, and therefore define a structural mutation and a nodal mutation. It should be noted,

however, that this is a specialisation of integer mutation in GE, as it is possible for both

types of events to occur during standard application of GE mutation to an individual’s

chromosome. Perhaps the search characteristics of mutation can be improved by applying

the components of integer mutation with differing locality to a problem? The following

analysis and experiments seek to determine the relative importance of these behavioural

components of mutation and begin to answer these kinds of questions.

If mutation events can be decomposed into different categories based on their locality,

there should be an observable difference in how they explore the search space. It is now

possible to investigate if there is a discernible difference in the performance of the operators

with regards to fitness. In the next section experiments are conducted to examine if there

is a significant difference between the operators.
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BENCHMARK PROBLEMS

5.4 Applying Nodal and Structural Mutation to Bench-

mark Problems

This section gives an overview of the procedure, settings, and grammars used in this

experiment. The five problems that were examined are symbolic regression, the Santa Fe

ant trail, word match, even five parity and the max problem. The Santa Fe ant trail, even

five parity, and symbolic regression are the same benchmarks as used by Koza [103]. Word

match is a specific alphabet based instance of a pattern matching task and is a suitable

benchmark as it allows the difficulty to be scaled by increasing the size of the pattern. The

max problem has been used as a standard problem for GP by Gathercole and Ross [62]

and Langdon and Poli [105].

5.4.1 Experimental Procedure

This section describes how the experiment was implemented and the settings that were

used. The experiments carried out in this chapter were implemented using GEVA ver-

sion 1.2 [147, 148], this is an open source framework for grammatical evolution in Java

designed by the Natural Computation Research and Applications group in University Col-

lege Dublin, Ireland. It can be downloaded from the NCRA website [141]. Crossover was

turned off so that the experiment could focus solely on the impact of mutation. A number

of properties were kept constant over the experiment execution. The experimental settings

are shown in Table 5.1. For consistency the fitness for all of the experiments are minimis-

ing, i.e., smaller fitness values are improvements. Each of the benchmark problems shall

now be described in detail.

5.4.2 Symbolic Regression

Symbolic regression is the task of finding a function that matches a set of observed points

for a target function. The grammar used in this experiment is shown in Figure 5.5. The

grammar generates polynomial equations and consists of two nodal rules defining the op-
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Tab. 5.1: Experimental Settings.

Property Setting

Population Size 500
Generations 50
No. of Runs 30

Mutation Rate 1%
Crossover Rate 0%

Selection Tournament Selection
Tournament Size 3
Replacement Generational
Elite Size 1
Initialiser Ramped Half and Half
Wrapping off

Random Number Generator Mersenne Twister
Seeding System Clock

erations and the variables and one recursive structural rule. The target function used in

this experiment is the polynomial x4 + x3 + x2 + x. Twenty fixed sampling points between

-1 and 1 were used as test cases to calculate fitness for the individuals. The fitness was

computed by summing the difference between the evolved and target functions for these

test cases.

<expr> ::= <op> <expr> <expr> | <var>

<op> ::= + | - | * | /

<var> ::= x | 1.0

Fig. 5.5: The grammar for symbolic regression.

5.4.3 Santa Fe Ant Trail

The goal of the Santa Fe ant trail is to find a program for controlling the movement of an

artificial ant in order to find all of the food lying on an irregular trail. The trail exists on a

32 by 32 two-dimensional toroidal grid. 89 pieces of food are located along a broken trail,

and the ant has 600 units of energy to find all the food. The grammar shown in Figure 5.6

consists of conditions and operations. The conditions allow the ant to sense if there is food

in the single square it is currently facing. The operations allow the ant to turn right, turn
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left, look forward one square and move forward one square. All operations requiring one

energy unit.

The grammar consists of three structural rules and one nodal rule. Two of the structural

rules are recursive and allow the derivation tree to grow while the nodal rule controls the

operations of the ant. There is a maximum amount of energy that the ant can use; after

all 600 energy units are used the number of food left on the trail is counted. The fitness

for the Santa Fe ant trail is the total amount of food minus the amount of food collected

by the time the energy is exhausted.

<code> ::= <line> | <code> <line>

<line> ::= <condition> | <op>

<condition> ::= if(food_ahead()==1):

{ <code> }

else:

{ <code> }

<op> ::= left(); | right(); | move();

Fig. 5.6: The grammar for Santa Fe ant trail.

5.4.4 Word Match

The goal of word match is to generate a string that matches a target string. Fitness is

evaluated by counting of the number of characters of the candidate solution which match

the target string. The grammar shown in Figure 5.7 consists of two nodal rules and two

structural rules. The match count is subtracted from the total character count (n) of the

target string so that the results minimise. The target word used for this experiment is

”experimental”.

<string> ::= <letter> | <letter> <string>

<letter> ::= <vowel> | <consonant>

<vowel> ::= a|o|u|e|i

<consonant> ::= q|w|r|t|y|p|s|d|f|g|h|j|k|l|z|x|c|v|b|n|m

Fig. 5.7: The grammar for word match.
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5.4.5 Even Five Parity

The goal of even five parity is to sum the number of bits set to one and return true if that

value is even. The grammar shown in Figure 5.8 consists of a recursive structural rule and

two nodal rules for the boolean operators and inputs. The fitness function for this problem

is the total number of test cases minus the number of test cases correctly classified.

<expr> ::= <op> <expr> <expr> | <var> | not <var>

<op> ::= "|" | & | ^

<var> ::= d0 | d1 | d2 | d3 | d4

Fig. 5.8: The grammar for even five parity.

5.4.6 Max Problem

The max problem tries to generate the largest number possible with a given terminal and

functional set and with a fixed tree depth limit. Despite seeming to be a simple problem

the fitness landscape is deceptive and leads to suboptimal solutions. This problem is an

interesting application for the new component behaviours of the mutation operator as

the grammar, shown in Figure 5.9, consists of only one structural rule(<expr>) and one

nodal rule(<op>). The max problem requires that every element of the tree contributes to

the final solution, i.e., there are no introns [105], which further removes any confounding

factors.

There is a globally optimal solution for a specific depth, D, given by the formula

42
D−3

. A ramped half and half initialiser was used to create the derivation trees with an

initialisation depth of 8. This equates to a phenotype tree of depth 6, the maximum depth

allowed for this problem. This was necessary because nodal mutation by itself cannot alter

the length of a phenotype and it required trees initialised to the maximum depth for a

fair comparison. The fitness for the max problem is the value generated by the parse tree

subtracted from the globally optimal value so that the fitness minimises.

Now that the problems have been defined, the next section describes in detail how the

operators were tested.
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<expr> ::= <op> <expr> <expr> | <var>

<op> ::= + | *

<var> ::= 0.5

Fig. 5.9: The grammar for the max problem.

Tab. 5.2: Fitness functions for benchmark problems.

Problem Target Fitness Function

Even Five Parity Even == True Hamming distance from target value
Santa Fe Ant Trail Food Total food minus food eaten
Symbolic Regression x4 + x3 + x2 + x Summation of test case error values

Word Match “experimental” Character Hamming distance

Max Problem 42
D−3

Global optimum minus evaluated result

5.5 Analysis of Fitness

The goal of this experiment is to investigate whether the structural and nodal components

of integer mutation have different search characteristics when applied to the benchmark

problems. Every problem was tested without crossover so as to avoid any confounding

effects. For each test problem four operators were tested, nodal mutation, structural

mutation, integer mutation and variable mutation.

The variable mutation operator is a composite of nodal and structural mutation and

has two mutation rates. The nodal mutation rate is initialised at zero and the structural

mutation rate is set at the maximum mutation rate (1% for this experiment). The proba-

bility of nodal mutation increases linearly from zero to the maximum mutation rate during

the course of a run while structural mutation rate does the opposite. At any point in the

experiment the sum of the structural and nodal mutation probabilities equalled the overall

probability. Variable mutation investigates if changing from structural to nodal mutation

operators during the run improved search characteristics. Parameter control was shown

by Eiben et al. [55] to be beneficial to search.

Each of these operators were tested with a per codon probability of mutation of 1%. As

each operator was applied to subsets of the genome of different size, the total amount of

mutations differed for each operator. The number of mutation events for integer mutation
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ended up being higher as the mutation probability was applied to every codon, whereas the

other operators were only applied to a subset of these codons. As there was a lower number

of mutation events for the component operators, integer mutation explored a greater area

of the search space. The result would be a bias in favour of integer mutation.

Hypothesis

Integer mutation in GE can be categorised into component operators based on the locality

of their changes to the derivation tree. Given the best fitness results after 50 generations for

each mutation operator: µ0, integer mutation, µ1 structural mutation, µ2 nodal mutation

and µ3, variable mutation, the following hypothesis is stated:

H0 There will be no statistically significant difference in performance for any of the mu-

tation experiments, i.e. µ0 = µ1 = µ2 = µ3

H1 There is a statistically significant difference in performance for a particular operator,

i.e. µ0 6= µ1 ‖ µ0 6= µ2 ‖ µ0 6= µ3 ‖ µ1 6= µ2 ‖ µ1 6= µ3 ‖ µ2 6= µ3

α The significance level (α) of the Wilcoxon rank-sum is 0.05.

5.5.1 Results

A Wilcoxon rank-sum (two-tailed, unpaired data) test was carried out for each experiment

to test for significance. A pairwise Wilcoxon rank-sum was used for the operator com-

parisons, pairwise testing adds corrections for multiple testing. This bias of the mutation

rate in favour of integer mutation should be taken into consideration when interpreting the

results below

Even Five Parity Results

The results for this experiment are shown in Figure 5.10. Integer, nodal and variable

mutation performed in a statistically identical fashion. This would imply that there are

an adequate distribution of tree structures in the initial population that nodal mutation
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is able to optimise. Structural mutation produced only limited fitness gains that plateau

early in the run. This result shows structural mutation could find improved tree structures

but it was not able to optimise them to the extent that nodal or integer mutation could.

This finding shows that structural mutation performs differently to nodal mutation on

the even five parity problem and so rejects the null hypothesis. It also shows that only

mutating a subset of the genome is capable of producing results that were not statistically

different to full integer mutation.
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Fig. 5.10: Results for even five parity.
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Santa Fe Ant Trail Results

The results for this experiment are shown in Figure 5.11. There was a statistically signifi-

cant difference in performance for nodal and structural mutation over the other mutation

operators and so the null hypothesis is rejected. The variance for structural mutation is

much higher implying that it produced both positive and negative impacts on fitness but

exploring the derivation tree structure had a significant benefit for the Santa Fe Ant Trail.

Nodal mutation performed worst overall and had little improvement during the course of

the run.
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Fig. 5.11: Results for Santa Fe ant trail.
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Symbolic Regression Results

The results for this experiment are shown in Figure 5.12. The Wilcoxon rank-sum test

showed that there was statistically significant difference in performance for nodal mutation

and so the null hypothesis is rejected. Overall nodal mutation performed worse than the

other operations.
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Fig. 5.12: Results for symbolic regression.
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Word Match Results

The results for word match are shown in Figure 5.13. Integer, nodal and variable mutation

again perform in a statistically identical way. This shows mutations occurring in the

nodal sections of the genome are having the most impact on fitness. Although there

is still a large amount of fitness variance using structural mutation, there is little overall

improvement after 50 generations. Again this would indicate that the initial population for

nodal mutation had a sufficiently diverse distribution of tree structures so that structural

mutation did not infer any advantage.
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Fig. 5.13: Results for word match.

98



5.5. ANALYSIS OF FITNESS

Max Problem Results

The results for the max problem are shown in Figure 5.14. The Wilcoxon rank-sum showed

that while integer and variable mutation produced similar results, both nodal and struc-

tural mutation had significantly different behaviour. Nodal mutation produced much bet-

ter fitness than any of the other operators while structural mutation produced no fitness

improvement during the course of the run.
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Fig. 5.14: Results for word match.

Langdon and Poli [105] and Gathercole and Ross [62] both used the max problem to

study GP crossover and it is considered difficult for GP as populations converge quickly

on suboptimal solutions that are difficult to escape from, except through a randomised
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Fig. 5.15: An Example max problem parsetree. Total =0.125.

search [105]. The aim of the max problem is to generate a tree that returns the largest real

value within a set depth limit. The optimal solution to this problem is to have addition

operators at the leaf nodes of the tree so that it creates a large enough variable (greater

than one) for multiplication to have an effect.

(a) Nodal mutation of Figure 5.15.
Total = 0.5.

(b) Structural mutation of Fig-
ure 5.15. Total = 0.25.

Fig. 5.16: Different fitness results for nodal and structural mutation.

Structural mutation was responsible for exploring tree structures whereas nodal mu-

tation optimised the nodes of a tree structure, as shown in Figures 5.15 and 5.16. The

ramped half-and-half initialisation gave nodal an unfair advantage as it started with a

broad sample of different tree depths to optimise. As nodal mutation cannot alter the

structure of a tree, a different initialiser that did not fully explore the tree depth could

have resulted in far worse performance. Despite this, the fact that nodal and structural

mutation both perform differently to integer mutation clearly indicates that there are two

separate behavioural components operating in integer mutation.
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5.5.2 Discussion

The experimental results showed that selectively altering subsets of codons from the chro-

mosome can have a dramatic effect on how GE navigates the search space. The different

results from each benchmark problem also show the impact representation has on the effect

of the operators. Both structural and nodal performed differently to each other on all of

the benchmark problems. Nodal mutation performed in a significantly different way to

integer mutation for symbolic regression and the max problem while structural mutation

performed differently for the Santa Fe ant trail, the word match problem and even five

parity problem. Every experiment showed that mutating subsets of codons could produce

results that were quite different to those generated when mutating the whole genome.

Variable mutation matched the performance of integer mutation for all of the bench-

mark problems. Both operators act upon the whole chromosome. Focusing on different

parts of the genome during the search produced no discernible benefit. Both nodal and

structural mutation exhibit different performance on all of the benchmark problems. This

evidence would suggest that how each operator navigates the search space has a differ-

ent impact on fitness. The next section examines the impact of these mutation events in

greater detail.

5.6 Analysis of Chromosomal Fitness

The previous experiment shows how each operator performs during the course of a run but

they do not have the granularity to see what was actually happening during each mutation

event. There was also a bias of using a per codon mutation rate when nodal, structural and

integer mutation effected different numbers of codons. The next experiment analyses the

operators’ impact by examining individual, independent mutation events. In Rothlauf’s

study [165], changes to the derivation tree were recorded but as it is known what kind of

phenotypic impact the operators have, this experiment instead looks at each operator’s

impact on fitness during individual codon changes.
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This experiment is not intended to reflect how these search operators function during

search. In practice the relationship is more complicated. For example, bad fitness results

generated by an operator are bred out of the population and, conversely, a good mutation

is always of benefit to a population regardless of its size. These metrics attempt to show

some of the mechanics at play during mutation. This experiment highlights the effect of

selectively altering codons that encoded for either a terminal or non-terminal production.

5.6.1 Hypothesis

Given a sample of fitness changes for each mutation operator: µ0, integer mutation, µ1

structural mutation and µ2 nodal mutation, the following hypothesis is stated:

H0 There will be no statistically significant difference in the scale of fitness change for the

operators, i.e. µ0 = µ1 = µ2,

H1 There is a statistically significant difference in fitness change for a particular operator,

i.e. µ0 6= µ1 ‖ µ0 6= µ2 ‖ µ1 6= µ2,

α The significance level (α) of the test is 0.05.

5.6.2 Setup

The experiment was run against the benchmark problems described in section 5.4 with

the same settings. The fitness was recorded by generating a random individual and then

traversing each codon with a 10% probability of mutation, when a mutation occurred the

change in fitness was recorded and then the codon was returned to its original value. This

meant that each mutation could be considered independent of those preceding it. If a

mutation created an invalid individual then this was recorded but no penalty was added to

the fitness. Assigning an arbitrary penalty value would distort the results, instead invalid

individuals are examined separately. This was continued until a sample size of 10,000

mutations was gathered for each operator.
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5.6.3 Results

The results for the experiments are shown in Tables 5.3, 5.4, 5.5, 5.6 and 5.7. A Wilcoxon

rank-sum test was performed on the fitness change samples to examine if there is a dis-

cernible difference between the operators. It should also be noted that nodal mutation

produced no invalids because, by its definition, cannot alter the structure of individuals,

only substitute one terminal for another.

5.6.4 Even Five Parity Results

The results for the Wilcoxon rank-sum showed there was a significant difference between

nodal and structural mutation. There was no statistical difference between integer muta-

tion and its two component operators. Nodal mutation had fewer events that resulted in

a change and when they did occur the change in fitness was less than that of a structural

mutation event. Overall structural mutation had a greater impact on fitness.

Tab. 5.3: Results for even five parity.

Property Nodal Structural Integer

Positive Mutations 97 397 127
Negative Mutations 327 1318 659
Neutral Mutations 9576 8207 9190

Invalids 0 58 24
Total Fitness Gain 98.0 420.0 135.0
Total Fitness Loss 361.0 1702.0 773.0
Average Gain 1.01 +- 0.1 1.06 +- 0.24 1.06 +- 0.24
Average Loss 1.1 +- 0.34 1.29 +- 0.56 1.17 +- 0.56

5.6.5 Santa Fe Ant Trail Results

The results for Wilcoxon rank-sum showed that there is a statistically significant difference

between structural and nodal mutation and also that the distribution of nodal and integer

mutations differs significantly. Nodal mutation produces more events that cause change
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although the scale of that is less for each mutation event. Overall nodal mutation had a

greater impact on fitness.

Tab. 5.4: Results for Santa Fe ant trail.

Property Nodal Structural Integer

Positive Mutations 1774 830 1183
Negative Mutations 3051 2158 2709
Neutral Mutations 5175 5520 5288

Invalids 0 1492 820
Total Fitness Gain 11280.0 5661.0 7627.0
Total Fitness Loss 19664.0 14620.0 18969.0
Average Gain 6.36 +- 5.87 6.82 +- 7.19 6.45 +- 7.19
Average Loss 6.4 +- 5.7 6.71 +- 5.55 6.95 +- 5.55

5.6.6 Symbolic Regression Results

The results for the Wilcoxon rank-sum showed there was a statistically significant difference

between nodal and structural mutation and between nodal and integer mutation. Once

again nodal produced more events that caused a change in fitness but the scale of change

for each event was less in magnitude. Overall nodal mutation had a greater impact on

fitness.

Tab. 5.5: Results for symbolic regression.

Property Nodal Structural Integer

Positive Mutations 2328 1082 1140
Negative Mutations 3862 2706 2284
Neutral Mutations 3810 5265 6218

Invalids 0 947 358
Total Fitness Gain (log10) 3684.39 2336.29 1903.32
Total Fitness Loss (log10) 7918.61 8060.36 5258.42

Average Gain 1.58 +- 1.21 2.16 +- 1.12 1.67 +- 0.96
Average Loss 2.05 +- 1.25 2.98 +- 1.63 2.3 +- 1.39
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5.6.7 Word Match Results

The results for the Wilcoxon rank-sum showed there was a statistically significant difference

between nodal and structural mutation and between nodal and integer mutation. As nodal

mutation can only change one character at a time, the fitness change is limited to plus or

minus one. Nodal mutation events produce a greater number of changes than structural

mutation events. Overall nodal mutation had a greater impact on fitness.

Tab. 5.6: Results for word match.

Property Nodal Structural Integer

Positive Mutations 428 144 250
Negative Mutations 1519 1086 1064
Neutral Mutations 8053 8770 8686

Invalids 0 0 0
Total Fitness Gain 428.0 144.0 250.0
Total Fitness Loss 1519.0 1166.0 1130.0
Average Gain 1.0 +- 0.0 1.1 +- 0.44 1.08 +- 0.37
Average Loss 1.0 +- 0.0 1.11 +- 0.31 1.08 +- 0.28

5.6.8 Max Problem Results

The results for the Wilcoxon rank-sum show that nodal mutation had significantly differ-

ent performance to the other operators. Nodal mutation generated the greatest number

of beneficial mutation events followed by integer and structural while at the same time

generating the most negative mutations. Structural mutation generated the most invalids

on this experiment. Over a quarter of the mutation events produced invalids. Upon further

investigation it was found that 2511 of structural invalids and 1173 of the integer invalids

had surpassed the depth limit set for the problem. It should be noted that over half the

time the GE mutation operators generated a neutral mutation. This was because of the

structure of the grammar. Each rule had two possible outcomes, mutation would either

change the outcome or leave it untouched. Overall, nodal mutation produced the best

fitness increase and was the least destructive operator. The variance for the structural
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mutation operator (+- 27.95) showed that it was capable of generating very destructive

mutations.

Tab. 5.7: Results for max problem.

Property Nodal Structural Integer

Positive Mutations 2339 580 750
Negative Mutations 2715 1810 1375
Neutral Mutations 4946 5062 6638

Invalids 0 2548 1237
Fitness Gain 5762.10 442.31 1425.45
Fitness Loss 6236.46 8211.06 3925.26
Average Gain 2.46 +- 7.85 0.76 +- 2.17 1.9 +- 6.37
Average Loss 2.3 +- 6.7 4.54 +- 27.95 2.85 +- 6.01

5.6.9 Discussion

The results from this experiment show that selectively altering subsets of codons from the

chromosome can have a dramatic effect on how GE navigates the search space. There was a

statistically significant difference in fitness change between nodal and structural mutation

on all of the benchmark problems and that the distribution of nodal mutations differed

significantly from that of standard integer mutation on four of the five problems.

The analysis of chromosomal mutation showed that nodal mutation had a greater num-

ber of small fitness changes and would therefore be beneficial in fine tuning a solution. In-

dividual nodal mutation events produced less fitness change than structural mutation but

as more of the events occurred the overall change to fitness was greater. While the creation

of invalids is generally regarded as detrimental to the search process, the large changes in

fitness show that structural mutation explored different areas of the search space regardless

of whether the result is beneficial to the population or not.

Structural mutation did not exploit a solution but instead performed a more global

exploration of the search space. While the benefits of structural mutation were not seen in

the chromosomal experiments, it would be wrong to think that just because the changes it

made did not have an immediate beneficial effect that it had no effect at all. Nodal mutation
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showed that it was capable of optimising a structure but without the structural component

of the mutation operator, different tree structures could not be explored. Exploration of

different tree structures increases the diversity of the population.

The intention of this section was not to show which was the best operator, something

which is problem dependent in any case [195]. Instead it was to decompose GE’s integer

mutation operator into its component behaviours. This information can now be used to

create a mutation operator that applies these behaviours to a problem as and when they

are needed. The use of intelligent operators might help GE escape local optima as well as

find the optimal solution more efficiently. This could be of particular benefit in dynamic

environments where an evolutionary algorithm must be able to adjust quickly in response

to a changing fitness function [47].

This presents the idea that the differing levels of locality in integer mutation help it to

explore different areas of the search space. Once the general structure of a good solution

has been selected, the direction of GE’s mutation could be focused on the content of that

solution so that it may be further optimised.

5.7 Conclusions

This chapter analysed the behavior of mutation in GE. Two different components of integer

mutation were investigated, nodal mutation and structural mutation. A third variable

operator was created to examine the effects of applying these different operators during

different stages of the search. The first set of experiments analysed how the operator

performed on a set of benchmark problems by comparing their effects on population fitness.

The results indicated that both nodal and structural mutation had a distinct impact on

evolutionary performance and in some cases improved performance over standard integer

mutation.

The second set of experiments then examined mutation operators at the chromosomal

level to judge the impact of individual codon changes on fitness. The results once again

showed that nodal and structural mutation events had a statistically significant different
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performance on all of the problems and in several instances nodal and structural muta-

tion had a significantly different performance to integer mutation. The following chapter

will conduct a further investigation into nodal and structural mutation by examining the

locality of changes at different stages of the derivation process.
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Chapter 6

Mutation Operators for Interactive

Evolutionary Design

6.1 Introduction

Fitness evaluation is an indirect method for guiding search. After a fitness value has been

assigned, the EA uses stochastic processes to generate new individuals. This can result in

highly fit individuals not being selected for the next generation or, if they are selected, the

child individuals bear little resemblance with their parents. To a designer unfamiliar with

interactive evolutionary computation (IEC) this can result in confusion and frustration

when interacting with the algorithm. Interactive evolutionary design presents the user

with designs from different parts of the search space but when designers find an interesting

individual they generally want to explore the search space around it. They perform a

localised search to see if a design can be further improved.

One approach that allows users localised search functionality is to allow the user to

apply operators directly to the individual. Localised search presents the user with many

small variations on the original design thus allow the user to explore a design “theme”,

i.e., a group of designs with feature commonality. The advantage of using an operator to

manipulate the design rather than direct manipulation of the design is any changes made to
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the phenotype are automatically encoded in the genotype, allowing for the new individual

to be reintroduced into the population and then further evolved.

Direct application of mutation operators has been used to guide interactive evolutionary

computation. Hart [76] allowed the user to specify which type of mutation (and mutation

rate) to apply because of the assumption that users sometimes have an intuition about

what type of change is required to an individual. This work stems from the study that was

performed on interactive design evolution [150]. During this study it was found that the

user applied the mutation operator to explore areas of the design space that had produced

interesting aesthetic designs. For mutation to be useful in this circumstance, it requires

locality to be maintained from the genotype to the output.

In GE, the evolutionary processes of the algorithm are carried out on the genome,

which is then mapped to produce an output. The mapping process makes it different from

standard GP as it goes though several transformations before it is finally output. This

means that there are several different stages during the process where neighbours could

be mapped to non-neighbours. If a user is to directly apply operators to a genotype then

the effect should behave in an intuitive manner, i.e., small changes to the genotype should

result in small changes to the phenotype. An example of this would be a representation for

creating bridges that allowed for minor changes to be made to the walkway. If operators

are to be developed for interactive evolution then the effect of GE’s mapping process on

locality must be examined. To do this distance metrics must be applied to different stages

of the generative process. The distance metrics provide a quantitative measure for the

operators and are used to record the locality of the changes they cause.

An operator with controllable locality provides a mechanism for user directed search

during interactive design. If the user wants to indirectly influence a design through the

use of an operator it must perform in a way that makes sense to the user. This type of

interactivity in the evolutionary process is categorised as a human based genetic algorithm

(HBGA) [186, 101]. If the user applies a small change to the genotype then they expect

a small change in the phenotype. Low locality can also increase user fatigue as the user

perceives it as a random search and will stop using the operator. This study examines the
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locality of the mutation operator when applied to designs in grammatical evolution.

The aim of this chapter is to investigate the impact of mutation on locality during the

generative process. To perform the analysis both qualitative and quantitative techniques

are used. The experiments examine how nodal and structural mutation effect the locality

on different phenotypic stages when applied to the problem of interactive design generation.

The subjective preferences of the user are then compared to explore if there is a correlation

between the metric’s idea of locality and the perceived locality at the final output stage

This chapter is organised as follows, the generative derivation process involved in GE

is discussed in Section 6.2. Section 6.3 describes the distance measures that were used

for comparing locality during the derivation process. Two experiments are conducted

in this chapter. The first compares locality changes at different phenotypic stages in

Section 6.4 and the second examines whether there is any perceivable locality difference

between mutation operators in Section 6.5. Finally, in Section 6.6 the conclusions are

discussed.

6.2 Generative processes in EC

The genotype to phenotype mapping is a terminology that has been adapted from the field

of biology. A genotype is an encoding upon which the evolutionary operators of mutation

and recombination act. An example of this would be human DNA. Changes in the genotype

are translated into changes in the phenotype. A phenotype is an observable characteristic

of an individual. An example of this in humans would be eye-color or height. Selection is

performed on the phenotype. This biological concept was introduced to the field of EC as

a method for separating the search and solution space [8] and as a metaphor for describing

the representations and mapping processes.

It could be argued that in traditional GP there is no generative process. The trees

that define the programs are directly manipulated by the operators, therefore there is no

generative stage. Although, this is only true if you examine tree structures exclusively.

The tree itself could be viewed as a genotypic encoding and the output of the program as
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<expr> ::= (<op><expr><expr>) (0)

| <var> (1)

<op> ::= + (0)

| - (1)

<var> ::= x (0)

| y (1)

Fig. 6.1: A sample BNF grammar.

the phenotype. An example of this is the cellular encoding used by Koza [104] to create

evolvable hardware. Furthermore, in Genetic Algorithms there is a mapping of the evolved

integer string translating it into a meaningful application. This highlights that a genotype

to phenotype to fitness mapping exists in all forms of evolutionary computation except the

most basic one to one mappings.

In GE there are several stages in the mapping process, each with its own observable

characteristics. As each stage also contains a version of the final instantiation, it can be

classified as a phenotype. The three main phenotypic stages are shown in Figure 6.2. The

integer list is translated into a derivation tree using a BNF grammar defined in Figure 6.1

and the mod rule. The terminal rules that make up the finished string are shaded. The

string is then evaluated to produce the final output phenotype, in this case a 3 dimensional

plot of a plane.

This study is interested in determining how differences in locality effect the different

phenotypic stages of the generative process. In this study a single change on the genotypic

stage is applied, the equivalent of a Hamming distance of one, and the corresponding

locality of the change at each stage of derivation is observed.

To study locality, it is necessary to define a metric for measuring distances in the

search space. In his work, Rothlauf claimed that for two different search spaces (e.g.,

genotypic and phenotypic search space) it is necessary to define two different metrics. As

the experiment examines different phenotypic stages in the genotype-phenotype mapping

representation, different metrics needed to be used for each one. The next section describes

the metrics that were used for comparing different phenotypic output.
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+(-x(+y x))(+x y)

<e>

<o> <e> <e>

<o> <e> <e>+ <o> <e> <e>

<v>- <o> <e> <e> <v>+ <v>

X <v>+ <v> Y X

Y X

Genotype 

=G

String 

= P2

Output 

= P3

Derivation

tree = P0

42

z=

Fitness

    =P4

BNF Grammar

 

Fig. 6.2: stages of derivation in GE.

6.3 Distance Measures for Grammatical Evolution

This section reviews and provides motivation for the four distance measures, namely, tree

edit distance, Levenshtein distance, normalised compression distance and Euclidean graph

distance. A metric defines the distance relationship between elements of a set. For a

function to be valid metric it must satisfy the following conditions: non-negativity, identity

of indiscernibles, the triangle inequality and symmetry. If a function does not satisfy the
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above conditions it can still be used as a measure if it satisfies the following conditions:

non-negativity, countable additivity and a null empty set. Three of the four measures

below describe metrics with the exception of Euclidean graph distance. The justification

for using Euclidean graph distance as a valid measure is described in detail in Section 6.3.4.

6.3.1 Tree Edit Distance

Traditional GP is based on programs that are structured as trees. Accordingly a method

comparing the similarity of programs based on their tree structure was proposed by O’Reilly

[152]. The distance is calculated by computing the minimum number of edits that is

required to transform a given tree to a target. There are three possible edits that can be

made: (a) Substitution: changing a node into another, (b) Insertion: adding a node within

the tree and (c) Deletion: removing a node from the tree. The approach taken by O’Reilly

was based on the work reported in [169, 184]. As GE does not use a traditional tree based

approach to generating programs, the distance is applied instead to the derivation tree

generated when the context free grammar is mapped to the individual.

Expr

Op Expr Expr

+ Var Var

X Y

Expr

Op Expr Expr

Var

X

Op Expr Expr

Expr

Op Expr Expr

Var

X

Op Expr Expr

+ Var Var

X Y

Original 2 Substitutions

Distance = 2

5 Additions

Distance = 7

Fig. 6.3: Tree edit distance example.
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6.3.2 Levenshtein Distance

Levenshtein distance is a metric for comparing two strings, or in this case, generated com-

puter programs. This has been used as a metric to compare representations in GP [97] [89].

The Levenshtein distance between two strings is defined as the minimum number of edits

needed to transform one string into the other, with the allowable edit operations being

insertion, deletion, or substitution of a single character. An example of calculating Leven-

shtein distance is given in Figure 6.4. In the study the output string is tokenised and the

Levenshtein metric is applied to phenotype symbols.

1. chair → hair (deletion)

2. hair → fair (substitution)

3. fair → fairy (insertion)

Fig. 6.4: Levenshtein distance example, distance = 3.

6.3.3 Normalised Compression Distance

The normalised compression distance (NCD) is a distance metric based on the non-computable

notion of Kolmogorov complexity [110]. It has been previously applied as a distance mea-

sure for linear structures within EC [67]. Kolmogorov complexity is a measure of how

much information is required to fully describe an object [109]. NCD is based on nor-

malised information distance (NID) which calculates the distance between two objects by

defining objects in terms of their Kolmogorov complexity and then comparing the object

descriptions.

As the Kolmogorov complexity of an object is not Turing computable, a more practical

approach was taken by Cilibrasi and Vitanyi [36]. NCD approximates the Kolmogorov

complexity by using off-the-shelf compression software to generate a compressed description

of the objects. These descriptions are then compared using the following formula:
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d(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))

where x and y are two strings, xy is their concatenation, and the function C gives the

length of the compressed version of its argument. The comparison carried out in this

experiment calculated the distance by applying the NCD metric to phenotype strings. The

ZLIB compression library [49] was the algorithm used for computing the distance.

6.3.4 Euclidean Graph Distance

The program output generated graph representations of designs. The graphs consisted

of nodes and edges in a three dimensional space. Examples of the output are shown

in Figures 6.13, 6.14, and 6.15 on page 127. Euclidean graph distance uses a Euclidean

distance measure to compare the nodes of the output designs. Euclidean distance is defined

as the straight-line distance between two points on the same plane. The distance, d, is

given by the formula:

d((x1, y1, z1), (x2, y2, z2)) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

The graph with the most nodes is selected for iteration. Each node in the larger graph

is then iterated through and the nearest node in the smaller graph is found. The distance

between these nodes is then added to the total distance between designs, thus ensuring

non-negativity, d(a, b) ≥ 0.

The output graphs consist of points and the edges between them but the Euclidean

distance formula only compares points in space. The edges must be taken into consideration

if that d(a, b) = 0 if and only if a = b. Exhaustively checking how the nodes were connected

proved to be computationally expensive. Instead, while computing the distance between

node pairs, the number of outgoing edges for each pair is also compared. Any difference in

the number of outgoing edges is added to the total fitness.

Two graphs, a and b, are considered identical if the distance for every node in graph a
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and its nearest respective node in graph b is zero and the number of edges for each node

pair is identical. While Euclidean graph distance does not fulfill all of the axioms required

by a metric it does conform to the conditions of a premetric. The axioms a premetric must

satisfy are: d(a, b) ≥ 0 and d(a, a) = 0. Even though Euclidean graph distance is not a full

metric, this does not prevent it from being a useful measure in practice [124, 71].

This section described four different metrics for comparing locality. The experiments

described in the next section now use these metrics to compare the locality of nodal and

structural mutation during the mapping process.

6.4 Locality During Derivation

The experiments described below examine the locality of phenotypic changes at different

stages of the derivation process. The distance metrics record change at all stages of deriva-

tion. The experiment set out to investigate whether a single change at the genotypic level

(Hamming distance one) would translate into a small or large change at the output stage.

Traditionally different metrics are used to analyse different types of operators but as this

experiment studies the different effects caused by components of the same operator, the

same metric was used for both. The distance results were only recorded when both a

structural and nodal mutation occurred, thus ignoring neutral mutation events.

The encoding that is examined in this chapter is a shape generating BNF grammar.

This allows us to produce visual output that may be further examined by the user. In order

to produce coherent yet complex shapes, a higher order function grammar for manipulating

graphs was used. The next section explains the operation of the grammar in detail.

6.4.1 Higher-Order Function Grammar

Hornby [86] states that hierarchy, regularity and modularity are desirable qualities in a

representation for design. McDermott et al. [126] and Yu [198] showed that grammars

were capable of encoding such qualities through the use of higher-order functions (HOF).
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Higher-order programming requires that functions can be passed to other functions as

arguments (first-class functions) and that anonymous functions can be created (lambda

expressions). The grammar used in the experiment is shown in appendix A. Lambda

expressions allow the grammar to define unique functions for the program which then act

as modules. Lambda expressions also allow for currying, where a pre-existing function is

called except some of the arguments to that function are fixed. Passing functions to other

functions allows for a level of hierarchy in the structure of the program. An example of a

program that uses such a grammar is now given.

#path generating function

circle_path(scalar, radius, midpoint, axis):

When given a scalar value it will return a 3D coordinate on a circular path.

The axis is the plane that remains constant for the circle coordinates

#connecting function

connect_3(starting_point, axis):

Generates two additional points equidistant from original and then connects them.

The axis is the plane that remains constant for the circle coordinates

#connecting function

drop_perpendicular(point):

When given a point it will add a point where the z-plane is zero and connect the points

#higher order function

map(scalar_point_function, scalar_list):

Uses a list of scalar values and a function to create a list of points on a path

#higher order function

function_map(function_list, point_list):

Higher order function that applies each function in the function list to the point list

Fig. 6.5: A simplified function set from the higher order function grammar. It consists of
a path generating function, two connecting functions and two higher-order functions.

A simplified example of the functional set of the grammar used in this experiment is

given in Figure 6.5. The geometric objects are created by combining path functions and

connecting functions. Path functions are given scalar values and return points on a path.

Connecting functions are given points and then generate additional points and connect

them together.

An example of a program is shown in Figure 6.6. The program uses the map function in

conjunction with a scalar list to generate a list of points that follow a circular path 6.7(a).

Two of the arguments to circle path() have been fixed or “curried”, the axis is set to

z-axis and the circle radius is set to 50. Function map the applies the functions Connect3()
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function_map([lambda x: connect3(x ,’y’),

lambda x: drop_perpendicular(x)],

map(lambda t : circle_path(t, 50, (0,0,0), ’z’),

[0,1,2,3,4,5])

Fig. 6.6: An example program generated by the grammar. function map() calls
drop perpendicular() and connect3() on the point list generated by map() and
circle path().

and drop perpendicular() to the set of points generated by circle path(). Connect3()

adds triangles to the points, as shown in Figure 6.7(b), and has the axis argument curried

so that it is set to the y-axis for all of the triangles. Finally drop perpendicular() add

a vertical line as shown in Figure 6.7(c)

(a) circle path(). (b) connect3(). (c) drop perpendicular().

Fig. 6.7: The output design generated by the program example.

Variations of the principles described in this example were used to create the designs

upon which the locality measures were performed. The next section describes the settings

used for the experiment.

6.4.2 Experimental Procedure

The experiment was implemented using GEVA version 1.2 [147]. We used a grammar which

generates designs through the use of higher order functions described in Section 6.4.1. The

designs are then rendered using Blender [180], an open source 3D modelling software. This

allowed us to produce designs which could then be subjectively evaluated by users. The

grammar used to generate the objects is shown in appendix A. It may then be used to
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compare similarity at the output stage of the evolved program. Instead of executing runs

in the traditional sense, single mutation events were carried out (i.e.; a Hamming distance

of one on the genotype) on randomly generated individuals and recorded the change in

output. As the experiment required a large sample size of the mutation events where

there was a phenotypic change, the experiment was allowed to run until 5000 non-neutral

mutation events occurred.

Hypothesis

Given the distance results of a metric for two different mutation operators, µ0 and µ1,

where µ0 represents a sample of 5000 nodal mutations and µ1 represents a sample of 5000

structural mutations, the following hypothesis is stated:

H0 The different distributions of mutation events do not show any statistically significant

difference, i.e. µ0 = µ1

H1 There is a statistically significant difference between the distributions for a given metric,

i.e. µ0 6= µ1

α The p-value for the Wilcoxon rank-sum is less than 0.05.

6.4.3 Results

A Wilcoxon rank-sum was performed on the nodal and structural mutation results for each

metric and they were shown to be significantly different at every stage of derivation. This

result allows us to reject the null hypothesis. The distributions for the different distance

metrics are shown in the in the histograms in Figures 6.8, 6.9, 6.10 and 6.11. The x

axis in the graphed results represents the distance from the original individual. Therefore

results close to the origin have high locality whereas results distant from the origin have

low locality.
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Tree Edit Distance

The result for tree edit distance in Figure 6.8 shows that nodal mutation only ever made

a change size of distance one. This result is predicted as, by definition, nodal mutation

should only replace one terminal node with another. Structural mutation had two distinct

distributions. Just under 50% of the mutation events made a change of size one while

the rest were distributed up to a distance range of 300. Although there was a large

overlap between nodal and structural mutation, structural mutation had a second distinct

distribution. The second distribution could be a result of the ripple effect that can change

how a large amount of the codons are expressed.
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Fig. 6.8: Tree edit distance.

Levenshtein Distance

The results for Levenshtein distance are shown in Figure 6.9. The nodal mutation distribu-

tion clusters close to the origin meaning that nodal events resulted in only a small change

in distance. Structural mutation generated changes where the distance recorded by the

metric was higher than nodal. Although structural mutation had less locality than nodal
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mutation, the distribution is skewed towards the origin. The result is that a portion of the

distribution of structural events result in magnitudes of change similar to nodal mutation.
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Fig. 6.9: Levenshtein distance.

Normalised Compression Distance

The results for normalised compression distance in Figure 6.10 show that nodal mutation

events have higher locality than structural mutation events. The distribution of nodal

change is still tightly grouped near the origin while structural mutation has two distinct

distributions.

Euclidean Graph Distance

The results for Euclidean graph distance in Figure 6.11 show that nodal mutation has a

higher locality than structural mutation. Even at the last phenotypic stage nodal mutation

had a tighter distribution than structural mutation.
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Normalised Compression Distance
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Fig. 6.10: Normalised compression distance.
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Fig. 6.11: Euclidean graph distance.

6.4.4 Discussion

The results examined in Section 6.4.3 support the hypothesis that there is a significant dif-

ference between structural and nodal mutation at all stages of the derivation process. The
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metrics support the hypothesis that nodal mutation has high locality whereas structural

mutation has low locality. As can be seen from these results the nodal mutation pro-

duced changes of smaller distance, i.e., higher locality, than structural mutation on both

the derivation tree stage and the string stage. Structural mutation showed a non-normal

distribution for both normalised compression distance and tree edit distance, as shown in

Figures 6.10 and 6.11.

The occurrence of ripple mutation would explain a two peaked distribution. One dis-

tribution of small changes would be generated when structural mutation substituted one

non-terminal for another thus leaving the subtree size the same. A broader distribution of

large changes would occur when a substitution changed the size of that derivation subtree.

The change in derivation tree size causes a “ripple” event which changes the following

codons and so redefines the meaning of the remaining chromosome. A ripple event has

previously been discussed in [144] and in Chapter 3.

The results highlight that there is a measurable difference in locality between nodal

and structural mutation at different stages of the phenotypic output. If the operators are

to be used for AUI then the difference in locality must also be perceivable by the user.

While objective measures give an idea of the locality, the perceived similarity of mutation

change is dependent on the subjective preferences of the user. The next section conducts a

similarity survey of nodal and structural mutation events to see if user preference correlates

with the metric results.

6.5 Locality Survey

This experiment examines if there is a perceivable difference in locality between nodal and

structural mutation that the users can observe. The grammar used for this experiment

is the same one that was described in Section 6.4.1. A random sample of 100 mutation

events was taken where both a structural and nodal change occurred. These designs were

then rendered in Blender and a survey was taken as to how closely the mutated designs

resembled the original.
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Survey participants are shown the original image and then presented with the same

design after both a nodal mutation event and a structural mutation event (Figure 6.12).

The user was then asked to select the image which most closely matches the target image.

A randomly selected sample of the output is shown in Figures 6.13, 6.14, 6.15 and 6.16.

No changes were made to the aspect or magnification of the images themselves and all

were take from the same angle.

The participant evaluated 100 individuals and were given as much time as needed to

complete the task. The order that the images were shown was randomised so as to avoid

bias. There was also the option to pass on a selection if no clear preference was presented.

Although a users interpretation of similarity is a somewhat subjective metric, the survey

allowed us analyse the users perception of the effect of the different operators.

Hypothesis

Given two samples of nodal and structural mutations, µ0 and µ1, where the mutations are

the paired results of mutating common target, the following hypothesis is stated:

H0 The is no perceivable difference in locality between the two groups, µ0 = µ1

H1 One group more closely matches the target, µ0 6= µ1

α The significance level of the binomial test is 0.05.

6.5.1 Results

Tab. 6.1: Results for similarity survey.

Preference Total Percentage
Nodal 1313 82%

Structural 247 15.5%
Did not know 40 2.5%

The results from the survey showed a high degree of agreement that the nodal mutations

produced an output more similar to the original than a structural mutation. A binomial
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Fig. 6.12: User screen for design survey.

(a) Original. (b) Nodal change. (c) Structural change.

Fig. 6.13: Example survey individual.

(a) Original. (b) Nodal change. (c) Structural change.

Fig. 6.14: Example survey individual.

test was performed on the results assuming that the distribution for the null hypothesis

was 0.5, i.e., the users had a 50% chance of selecting nodal over structural mutation. The

result for the binomial test showed that the results obtained were significant. The results

for the survey are shown in Table 6.1. Despite the subjective nature of the survey, the

result implies that nodal mutation is a high locality operator whereas structural mutation
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(a) Original. (b) Nodal change. (c) Structural change.

Fig. 6.15: Example survey individual.

(a) Original. (b) Nodal change. (c) Structural change.

Fig. 6.16: Example survey individual.

is a low locality operator.

6.6 Conclusions

This study set out to analyse locality on the successive phenotypic output generated by

GE. This chapter defined the different phenotypic stages and described the components

within integer mutation that were being investigated. Experiments were carried out to

show how the different mutation events compared in their locality. The results showed

that it was possible to generate both high and low locality events during integer mutation

that maintained their locality throughout the mapping process. The results will enable us

to give users control over how much change they expect on a phenotypic level and increase

the efficiency of their search. It also allows the user to search the design space exclusively

with high locality operators and optimise designs that appeal to the user.

This chapter distinguished two different components of integer mutation in GE that
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each have different scales of change. By making this distinction it opens up the possibility

of a dynamically changing operator. The operator would change the granularity of its

search as it was carried out.
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Chapter 7

User Interfaces for Interactive

Evolutionary Design

7.1 Introduction

In traditional IEC there is a disconnect between the user and the algorithm. User evaluation

through selection is only indirectly responsible for the output. The designer must feel

directly involved in the design process [15]. Take the example of a user evaluating widget

designs for an interactive evolutionary algorithm. Through selection they manage to find

the perfect widget except that a single component is out of place. The user knows it

is possible to move the component to the correct place and wants to alter the design. If

evaluation is the only means of making this change then the user must select widgets where

the component is in the correct place and hope the algorithm intuits their wishes correctly.

Interrupt, intervene and resume (IIR) is necessary if evolutionary algorithms are to be used

for design.

For IIR to work it must be possible to map changes to the phenotype back to the geno-

type. The complex mapping process of GE complicates this process. It is also possible the

user could make changes that are not expressible in the grammar and so a reverse mapping

would be impossible. The user is free to export the design to a suitable CAD format and
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make further changes but then the design cannot be evolved. An alternative approach is to

enable the user to change the phenotype by altering the genotype. This chapter presents a

novel interface that allows the user to directly manipulate the chromosome and instantly

examine the resulting change.

In the preceding chapter it was demonstrated that nodal and structural mutation had

a perceivable difference in the locality of their changes. Nodal mutation generated changes

of high locality while structural mutation generated changes of low locality. This chapter

examines if the operators can be used by the designer to explore the search space. Allow-

ing the users to apply nodal and structural mutation would broaden interaction beyond

evaluation and increase the amount of feedback and bias a user can apply to the search.

Increased feedback will direct the algorithm to areas of the search space the designer finds

more interesting. The experiments examine whether additional feedback from the user can

be of benefit to the problem of interactive evolutionary design. The experiment finds that

the interface between the user and the search space plays a vital role in this process.

Nodal and structural mutation have different degrees of locality. By giving the user

the ability to selectively apply each operator the user can choose to move a small or a

large distance from the current individual. Selecting which operator to apply allows the

user to bias the search toward exploring a specific area of the search space, which has been

shown by Whigham [194] to improve evolutionary search. User interaction with the search

is increased by directly mutating individuals they find appealing. The approach taken in

this chapter makes the assumption that when users find a design that appeals to them

they want to see similar variations of that preferred design. The experiments described in

this chapter evaluate different user interfaces to the evolutionary algorithm that allow the

designer to direct the search using mutation and explore if these can aid an evolutionary

design process.

This chapter is organised as follows. The initial interactivity experiment and user

interface are described in Section 7.2. The results from this experiment led to a novel

implementation of the interface and new series of experiments described in Section 7.3.

Finally, the conclusions and future work are discussed in Section 7.4
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7.2 Interactive Application of Nodal and Structural

Mutation

This experiment primarily examines if user application of mutation operators can direct

the evolutionary algorithm during search. The secondary goal of the experiment is to

compare whether separating mutation events allows the user to navigate the search space

more effectively by varying the locality of their search. The experiment compares user

performance at directing search using integer mutation against a combination of nodal and

structural mutation.

The subjective nature of aesthetics makes interactive evolutionary design a difficult

area to quantify. Normally a user is allowed to explore the search space until they discover

an appealing design. This approach is problematic as there is no way of distinguishing if

the algorithm provided any benefit to the search or whether it just presented randomly

generated designs to the user. In addition, there is also the problem that the interest a

user has for a design is completely subjective and prevents any additional analysis of the

results.

In an effort to generate measurable results, the experiment specifies a target design and

the goal for the user is to match that target. The user results are then compared against a

control group of randomly generated selections. The user is asked to match three targets

using two different techniques. The targets are described in greater detail in Section 7.2.1.

Although this is quite different to the design process, it is analogous to the user combining

an interesting design with a design they had observed previously, i.e., finding a path from

the current design to one that incorporates features of the previous design. Setting an

objective makes the task quantifiable but it does not simplify the task. The user must

change the correct codons before they are mapped to obtain the desired output. This is

a non-trivial task given the complex mapping processes in GE. The experiment described

in the next section examines if the user can direct search to match a target using such an

approach.
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7.2.1 Experimental Design

The experiment was run using Architype, an interactive design generation tool based on

GE. Architype is based on PonyGE version 1.3 [80]. Rapid prototyping of interfaces is

possible using Python’s standard GUI package, tkinter. The grammar used in this exper-

iment is the same bridge grammar that was described in Section 4.2.1 on page 62. The

Architype interface was adapted for this experiment as shown in Figure 7.1. There is a

target bridge on the right hand side and nine bridges to select from on the left hand side.

When the user selects a bridge, their choice is saved in a green box in the top left frame

and 8 mutated variations are made of it. The user can keep selecting bridges until they

think they have matched the target or have reached the five minute time limit. Twenty

four volunteers participated in this experiment and the experiment itself was approved by

the Ethics Committee in UCD (Reference number: LS-E-11-05-Byrne-ONeill).

Fig. 7.1: A screen-shot of the interactive GUI. The target is on the right and the results
from the previous mutation choice are in the 9 frames on the left.

There is no crossover is used in this experiment. All variants are created exclusively
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by mutation events. The mutation operators do not work probabilistically, instead they

select a codon from within the coding region of the genome and increment it by one. As a

codon is only used when choosing the production of a rule, incrementing it by one means

that it will always encode for a new production, thus ensuring a genomic change in the

individual. It also means that the Hamming distance between mutation events is exactly

one.

To avoid confusion it was decided to simplify the allowed user input. The user is limited

to either the left mouse button (LMB) exclusively, or both the left and right mouse button

(RMB). When the input is exclusively LMB, standard integer mutation is applied. When

the user has a choice of both buttons, the LMB corresponds to a nodal mutation and the

RMB corresponds to a structural mutation. The targets the user was required to match

are shown in Figure 7.2. They were created by generating a random genotype which was

then mapped using the same bridge grammar that the user interface was based upon. The

idea of randomly generating the targets was to remove any human bias from the target

selection process.

(a) Target 1. (b) Target 2. (c) Target 3.

Fig. 7.2: The targets that the users had to match.
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The user was allowed two trial runs to familiarise themselves with the interface and

the different effects of the mutation operators. Finally, after completion of the trial the

user was asked to complete six experiments. The first three of the experiments used

integer mutation to match three targets and the next three experiments used nodal and

structural mutation to match the same three targets. A fixed random seed was used for

each experiment so that all participants would be presented with the same initial designs.

The time of each selection and the individual selected were recorded. The user had a time

limit of five minutes to complete each task.

The user was presented with every selection they had made upon completion of the

experiment and was asked to select the design that most closely matched the target. After

completion of the experiment, the participant was asked to complete a short survey, sup-

plied in appendix C.1. In order to see if the improvement over time was due to the choices

of users, a sample of random mutation events was generated for comparison. The ran-

dom sample was created by allowing a Mersenne twister random number generator make

selections using the same interface that participants had used.

Hypothesis

Given a sample of randomly generated mutation events µ0, and the results of user applica-

tion of mutation operators, µ1 and µ2, where µ1 allowed the user to apply integer mutation

and where µ2 allowed the user to apply nodal and structural mutation, the following hy-

pothesis is stated.

H0 There will be no statistically significant difference between the random sample and

either operator, µ0 = µ1 = µ2

H1 There is a statistically significant difference in performance for a particular operator,

µ0 6= µ1 ‖ µ0 6= µ2 ‖ µ1 6= µ2

α The significance level of the Wilcoxon rank-sum is 0.05.
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7.2.2 Results

The results for the distance metrics are shown in Figures 7.3 through 7.5. The Figures

show the time taken by the user (in seconds) on the x-axis and the distance from the target

on the y-axis. The smaller the value on the y-axis, the more closely the result matched

the target. The graphs show the best result obtained from the user over the course of the

run. As shown in the graphs, there is little or no improvement over time. This result was

further confirmed by comparing the user input against the sample of random selections. A

Wilcoxon rank-sum was performed and no significant difference was found between the user

data and the randomly generated data. This results supports the null hypothesis. Only

the results for the first target image are shown as the other target graphs show similar

results. The results are discussed further in Section 7.2.3
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(b) Nodal / structural mutation.

Fig. 7.3: Euclidean distance for target 1, the x-axis is the time taken and the y-axis is
the distance from the target. There is no significant improvement in distance during the
course of the run.
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(b) Nodal / structural mutation.

Fig. 7.4: Levenshtein distance for target 1, the x-axis is the time taken and the y-axis is
the distance from the target. There is no significant improvement in distance during the
course of the run.

7.2.3 Discussion

The results from Section 7.2.2 appear to support the null hypothesis, that the user is unable

to direct search using interactive operators and selection. This is a highly contentious

conclusion to draw as many years of interactive evolutionary computation studies have

generated results that reach the opposite conclusion. If this is not the case then there are

two possible causes for the results.

Choice of Metrics

How a human evaluates the similarity of two designs is a subjective measurement. The

survey showed that users often based how similar they found bridges on individual features

or parts of the design, such as the handrail or the curve of the walkway. While the metrics

comparing bridges at earlier stages of the mapping process (tree edit and Levenshtein

distance) would have great difficulty recording small changes on components, Euclidean
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(a) Integer mutation.

0 50 100 150 200 250 300 350
0

20
40

60
80

10
0

bothTarget1Tree

time(seconds)

di
st

an
ce

(b) Nodal / structural Mutation.

Fig. 7.5: Tree edit distance for target 1, the x-axis is the time taken and the y-axis is the
distance from the target. There is no significant improvement in distance during the course
of the run.

distance should have recorded some improvement. The results from Chapter 6 also showed

a high level of correlation between the human perception of distance and the metrics.

While the metrics are not perfect and human selection is subjective, some improvement

should have been detectable.

Methodology

The experiment was constructed so as present the evolved population to the user and to

facilitate precise logging of input. Pilot studies were completed to ensure the interface

was usable and that certain concerns were addressed such as saving previous designs and

allowing a single design to be repeatedly mutated. While these aspects of the interface are

important they are essentially technical concerns. What was not addressed is the question

of how to best facilitate the user’s exploration of the search space.

A user made 17 selections on average during the five minutes they had to match a

target. This equates to a Hamming distance of 17 from their original selection. An average
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of 48 codons were used to encode a design so a Hamming distance of 17 could allow for

significant change to the individual. The lack of progress during search arose from the fact

that each selection presented the user with 8 more images. As the participant is presented

with only 136 designs (on average) during the course of a run, the result is that they only

observe a small part of the search space. To assume that a significant improvement could

be made in this short distance was optimistic.

The target bridges were created by randomly generating genotypes and using these to

select individuals from the search space. Little thought was given to how “far” the target

individuals were from the starting point. Nor was it known if the targets were reachable

from the starting point. The approach taken in this experiment was intended to reduce

human bias but it may have inadvertently made the task too difficult for the user.

The user did not know what change to expect between a nodal and a structural muta-

tion, which meant that the users intention of“big” and “small” changes may not be evident

in the generated individuals. What constitutes a small or a large change depends on the

user’s personal preference. The nodal mutation events presented a unique problem to the

user as the resulting mutations looked identical to the user. Some nodal changes fell be-

low the threshold of a Just Noticeable Difference (JND). JND is a concept from cognitive

psychology that was first described by Ernst Heinrich Weber [193]. JND is the smallest

difference between two stimuli that is still capable of being perceived. The lack of what

the user perceived as new variations also hindered them in completing the task.

Although the design selections were presented to the users at the end of the run, many

were frustrated by the inability to go back to a good design. By forcing the user to

follow a specific evolutionary path, the experiment severely limited the user and added

to their frustration when they “lost” a good design. Whether being able follow different

evolutionary paths would provide a benefit to search is a matter of conjecture but it

degraded the user experience with the interface.

The grammar also complicated what was already a difficult task. Several participants

complained of identical bridges being generated. Although most of these cases were a result

of the JND described above, distance comparisons performed afterwards showed that some
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individuals were identical. Despite every mutation incrementing a used codon, sometimes

the grammar generated anonymous functions that required codons for components that

were not expressed in the output. An example of this would be codons used to generate a

Bezier curve and only half the Bezier curve being used.

Due to the reasons discussed above a new approach was developed for allowing user

interaction with the evolutionary algorithm. The new interface is discussed in the next

section.

7.3 A Local Search Interface for Interactive Evolu-

tionary Architectural Design

It became clear from the experiment in Section 7.2 that allowing the user to apply the

mutation operators is not enough, the user has to be able to interact with the algorithm

in a meaningful way and be able to process a much greater area of the search space.

After analysing the results and user feedback gathered from the previous experiment, the

interface was re-implemented in an attempt to allow the user to explore the search space

more effectively. Whether the metrics adequately reflect similarity and locality is also

examined.

The interface used in this experiment addresses the problems described in Section 7.2.3.

Instead of the user choosing an operator, all possible mutations of Hamming distance one

were applied to an individual. Each codon was mutated in turn, the result was rendered

and then the codon was restored to its original value. The productions for each codon

generated a collection of nodal and structural mutation events to choose from. This process

is shown in Figure 7.7. A Euclidean graph distance comparison, described in Section 6.3.4

on page 116, was performed so that individuals identical to the original were removed

from the population, thus reducing the search space presented to the user. By making

no assumption about operator choice and instead presenting the user with every available

option, it is now possible to examine how they navigate the search space based on their
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selections.

(a) The target is on the right and the starting individual is in the middle frame.

(b) A nodal mutation of the starting individual. The handrail is altered slightly by
the mutation event.

(c) A structural mutation of the starting individual. The supporting struts and the
handrail design are altered by a single mutation event.

Fig. 7.6: New user interface. The target is on the right and the current individual is in the
middle frame. The user instructions and a slider that shows the current position in the
population is on the left.
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Tab. 7.1: Problems addressed by new interface.

Problem solution

Magnitude of change unknown Show all changes in advance
Limited user evaluations Local search is animated for quicker evaluation
No measure of target difficulty Each target increases in Hamming distance
No alternative paths allowed “undo” button added
Difference below JND Mutations animated to highlight changes
Identical Individuals Removed by comparing Euclidean graph distance

Presenting an entire population of mutation events to the user simultaneously is not

feasible. The interface instead uses a single window for exploring the population. The

interface is shown in Figure 7.6. The current user selection is on the left and the target

is the image on the right. The leftmost panel states the instructions, user controls, time

remaining and the distance from the target (stated as the difference). The user scans

through the mutation events using the left and right arrow keys and the selects the mutation

change they want and that now becomes the basis for generating the next population.

The refresh rate for the window is ten frames per second. As the frame rate is below

the level of “persistence of vision”, where the afterimage remains on the retina, the user

is capable of perceiving the bridges distinctly. Codon changes were made sequentially so

a codon’s productions are grouped in their presentation to the user. Overlaying groups of

changes in the same window allowed the user to pick up smaller JND changes by viewing

them in rapid succession.

01001010110110110101

11001010110110110101

01101010110110110101

01011010110110110101

00001010110110110101

.

.

.

Genotype GUI User SelectionMapping

Fig. 7.7: Generating Hamming distance 1 individuals for user selection. The value of each
codon is altered and the result is saved. The codon is then restored to the original value
before moving on to the next codon.
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7.3.1 Experimental Setup

The subjective nature of aesthetics makes evolutionary design search a difficult area to

quantify. To generate measurable results a target design is specified and the user must

then attempt to match it. The experiment asked the user to match ten different targets.

The random seed was fixed so that interface always started from the same individual. The

targets were mutated variants of the starting individual and they increased in difficulty as

the Hamming distance was greater for each successive target.

The targets are shown in the order they were presented to the user in Figure 7.8.

The Hamming distance, the number of nodal and structural mutations and the Euclidean

graph distance from the starting graph for each target is shown in Table 7.2. In an effort to

generate a range of target difficulties, each target had a Hamming distance greater than or

equal to the target that preceded it. Although this is not an absolute measure of difficulty

it does mean that more input is required from the user to obtain a perfect match.

Each participant had two minutes in which to try to match the target. They were

free to make as many selections within this time frame and they could undo selections if

they wished. At the end of target exercise the user was asked a short survey, supplied in

appendix C.2. Twenty five volunteers participated in this experiment and the experiment

itself was approved by the Ethics Committee in UCD (reference number: LS-E-11-129-

Byrne-ONeill).

A sample of random trials were generated to examine if the users were capable of using

the interface to match the target. The same interface was used except selections were chosen

randomly by a Mersenne twister random number generator. Twenty five random samples

were generated for each of the targets. The distribution of the random selections for each

target matched the user’s click average and standard deviation, as shown in Table 7.2.

Hypothesis

Given the distance results of a sample of randomly selected individuals from a given target,

µ0, and the distance results of the user selected individuals from a given target, µ1, the
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(a) Original. (b) Target 1. (c) Target 2.

(d) Target 3. (e) Target 4. (f) Target 5.

(g) Target 6. (h) Target 7. (i) Target 8.

(j) Target 9. (k) Target 10.

Fig. 7.8: The targets that the user had to match, the original individual that the user
started with is in the top left corner.
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Tab. 7.2: The distance and change types for each target.

Target Nodal: Hamming: User User User Random
Structural Euclidean Clicks Evaluations Matched Matched

Target 1 1:0 1:10 1.0 ± 0.0 22.4 ± 34.9 100% 4.0 %
Target 2 2:1 3:92 3.8 ± 2.1 190.3 ± 80.6 64.6% 11.8%
Target 3 2:2 3:184 2.7 ± 1.3 202.4 ± 61.6 64.9% 12.1%
Target 4 4:1 5:158 4.1 ± 2.2 245.2 ± 126.4 74.1% 20.3%
Target 5 5:1 6:214 3.3 ± 1.1 325.6 ± 130.2 36.6% 31.8%
Target 6 7:0 7:188 3.5 ± 1.3 196.0 ± 61.4 58.9% 31.3%
Target 7 6:2 8:465 3.5 ± 1.2 262.3 ± 83.2 57.6% 15.9%
Target 8 7:1 8:457 4.0 ± 1.9 364.7 ± 131.0 37.5% 27.0%
Target 9 7:2 9:273 4.8 ± 2.0 306.4 ± 86.1 28.2% 36.4%
Target 10 7:4 11:117 4.9 ± 2.0 282.4 ± 103.7 29.7% 42.5%

following hypothesis is stated:

H0 There will be no statistically significant difference between the random sample and the

user generated results, µ0 = µ1

H1 There is a statistically significant difference in distance from the target for the user

generated results, µ0 6= µ1

α The significance level of the Wilcoxon rank-sum is 0.05.

7.3.2 Results

The number of user selections (user clicks) and the number of images presented to the user

(user evaluations) are shown in Table 7.2. In the previous experiment, the users selected

17 individuals and evaluated 136 designs on average in a five minute time period, the

equivalent of 27 evaluations per minute. The user click and user evaluation results show

that the user made fewer selections with the new interface than in the previous experiment

but they evaluated many more designs within a two minute time period. The highest

number of evaluations was for target five where the user was presented on average with

325 images for evaluation, the equivalent 162 evaluations per minute.
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The percentage of user mutations (User Matched) and random sampling mutations

(Random Matched) that matched the target codon changes are also shown in Table 7.2.

With some exceptions, the percentage of matched codon mutations decreases as the Ham-

ming distance increases. The opposite is true for random sampling: as more codons are

changed there is an increased likelihood that a random mutation would match that of the

target.

A Wilcoxon rank-sum test compared the final selections for the user and the random

sampling. There was a statistically significant difference from random with exceptions

of target 5 and target 10. The result rejects the null hypothesis for 8 of the 10 targets.

In these cases the results show a distinct improvement over time for the user generated

results while the random samples either show no reduction of distance from the target or

an increase in distance from the target. The results show that users could successfully use

the interface to direct search.

Scatter plots were generated to examine if there was an improvement over time regard-

ing Euclidean graph distance from the target. Each user selection generated a data point

that recorded the time, distance from the target and the mutation type. A locally weighted

scatter plot smoothing (LOESS) was performed on the results to plot a smooth curve of

the average values. The set of data points was then bootstrapped [54]. Bootstrapping is

a resampling technique that generates an estimation of the distribution during the course

of a run. The LOESS curves for each of the samples were plotted. The graphs on the

left of Figures 7.9 to Figures 7.18 compares the user distribution (green) with the random

sampling (grey).

The type of mutation for each selection was recorded with intention of examining if

mutation operators of different locality were used at different points during the target

matching process. The user was not informed of whether they were making a nodal or

structural mutation. They made their selection based on the output of the mutation

event. Bar charts showing the number of nodal mutations (red) compared to the number

of structural mutation (blue) are shown in the graphs on the right of Figures 7.9 to 7.18.

The x-axis is the number of selections made while the y-axis shows cumulative frequency
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for a particular type of mutation.

Target 1

The first target was used to introduce the user to the interface. As the target was a

Hamming distance of one from the original, every participant successfully matched the

target with one selection. The result shows that if a desired individual is in the immediate

proximity of the current individual, the user is capable of finding it.
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(b) Structural / nodal selections.

Fig. 7.9: Results for target 1.

Target 2

The second target consisted of two nodal mutations and one structural mutation and was

one of the three instances where there was more nodal selections initially than structural

selections. This meant the users chose a high locality mutation event instead of a low

locality event. As the Euclidean distance from caused by the mutation events was only

92, meaning that none of the mutation events had a greatly changed the individual. If the

locality of both nodal and structural changes was comparable then it would explain why

the participants went for a nodal change initially rather than a structural change.
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(b) Structural / nodal selections.

Fig. 7.10: Results for target 2.

Target 3

The third target consisted of two nodal and two structural mutations. The participants

overwhelmingly chose a structural mutation initially and then refined their selection with

higher locality nodal mutations. This is shown in the LOESS results as a steep decrease

in the distance followed by a plateau where there was little additional improvement.

Target 4

The fourth target consists of four nodal mutations and one structural mutation. Partici-

pants overwhelmingly started with structural mutation and then applied nodal mutations.

Despite the user’s preference for a low locality event for their first selection, the fitness

initially got worse according to the Euclidean distance. Additional selections made by the

participants increased the fitness and there was significant improvement in distance by the

end of the task.
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(a) LOESS and bootstrapping results.
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(b) Structural / nodal selections.

Fig. 7.11: Results for target 3.
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Fig. 7.12: Results for target 4.

Target 5

The fifth target consists of five nodal mutations and one structural mutation. Although

more structural mutations were applied in initially, the proportion of nodal and structural
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mutations remains consistent. The participants mutated the same codons used to create

the target only 36% of the time, resulting in a poor score. There is no improvement made

by the participants for this experiment and their results are indistinguishable from random

selection.
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Fig. 7.13: Results for target 5.

Target 6

The sixth target consists of seven nodal mutations and no structural mutations. This is the

second of the three instances where there were more nodal mutations made initially than

structural mutations. As all the changes that generated the target were nodal changes and

58.9% of the user selections matched the mutated codons, it shows that the users were

capable of following an evolutionary path similar to the one that created the target.

Target 7

The seventh target consists of six nodal mutations and two structural mutations. There

is a large drop off in distance initially as users all selected the same structural codon for

mutation. The low locality of changing that structural codon is evident in the Euclidean
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(b) Structural / nodal selections.

Fig. 7.14: Results for target 6.

distance. Once the distance had been reduced the users used nodal mutations of higher

locality vary the design, resulting in smaller fitness changes.
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Fig. 7.15: Results for target 7.
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Target 8

The eighth target consists of seven nodal mutations and one structural mutation. It is the

third instance where there were more nodal mutations initially than structural mutations.

Overall there was a lower percentage of matched codons. This means that the users were

not mutating the same codons that changed to generate the target but there was still a

significant decrease in distance. The result suggests the users could match the phenotypic

output but by following a different genotypic path.
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Fig. 7.16: Results for target 8.

Target 9

The ninth target consists of seven nodal mutations and two structural mutations. The users

all applied an initial structural mutation but it does not have the same level of improvement

as seen in Figure 7.15. Overall the users matched less codons than the randomly generated

sample (28% and 36% respectively). Despite this there still was still a significant reduction

in distance. The variance of the results is much larger than on the other targets, suggesting

that while some users were able to match the target, there were several participants who

151



7.3. A LOCAL SEARCH INTERFACE FOR INTERACTIVE
EVOLUTIONARY ARCHITECTURAL DESIGN

had much less success. The results for the eighth and ninth targets support the hypothesis

that different genotypic paths could lead to the same phenotypic output.
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Fig. 7.17: Results for target 9.

Target 10

The tenth target consists of seven nodal mutations and four structural mutations. This was

the largest Hamming distance and over one third of the expressed codons were mutated.

As the user only made four selections on average it is unlikely the user would be able to

match the target. There was no statistically significant difference between the user results

and the randomly generated sample.

7.3.3 Discussion

The results discussed in Section 7.3.2 show that the users were able to match a target using

the new interface, with the exception of target five and target ten. In the case of target

five, the users matched few of the mutated codons and so followed a different mutation

path that ended up in a local optima. In the case of target ten, a large percentage of the
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Fig. 7.18: Results for target 10.

expressed codons were mutated and so it presented too difficult a challenge to match all

the changes within the allotted time.

This evidence supports the hypothesis that the user could use such an interface to

mutate a design to incorporate features that they had previously seen in other designs.

The results obtained regarding the participants use of nodal and structural mutation show

that users started by predominantly applying a structural mutation and then moving to

nodal mutation. The result means that the participants commenced their search by making

large phenotypic changes and then fine tuning that solution with high locality mutation

events. There were three exceptions to this including target six which consisted of nodal

mutations exclusively.

A surprising result is that there was a definite improvement in Euclidean graph distance

for targets 8 and 9 while the overall percentage of codons matched were low (37.5% and

28.2% respectively). The result shows that it is possible to get close to matching a target

without following the exact same mutation path. What this also means is that the user is

following a different genotypic path to arrive at the same phenotypic output.
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7.4 Summary

In this chapter novel interfaces were presented that enabled the user to perform a local

search on an individual. The initial experiments failed to show that the user was capable

of directing search. A second interface was developed that allowed the user perform a local

search on a specific individual. The experiments showed that the user was able to use the

second interface to match a target by directly manipulating the genotypic representation.

This result supports the hypothesis that the new interface can facilitate user directed local

search toward a desired individual. Examining the user generated results showed that they

moved from low locality operators to high locality operators to both explore and exploit the

search space. As the user changes are made to the genotypic representation, the new indi-

vidual can be reintroduced into the population and evolutionary algorithm can continue.

The intention of this work is to combine the interface with existing evolutionary design

tools to explore the additional benefits of combining AUI with evaluation for evolutionary

architectural design.
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Chapter 8

Conclusions & Future Work

Having examined different methodologies for architectural design exploration based on

grammatical evolution, the conclusions are now discussed. A summary of the thesis and

the contributions it has made are given in Section 8.1. The limitations of this thesis are

highlighted in Section 8.2. Finally, avenues for future work are given in Section 8.3.

8.1 Thesis Summary

The goal of this thesis was to examine the use of grammatical evolution as a method for

exploring the search space of architectural design. Combining the open-ended represen-

tation of GE with the structural constraints of architectural design allowed for the open

ended exploration of different architectural designs. In order to incorporate the aesthetic

preferences of the designer, methodologies for increasing user feedback both directly and

indirectly were examined. The following questions were asked in order to examine if this

goal could be accomplished:

1. Can objective fitness functions be developed for evolving architectural designs?

2. Can search operators be developed that allow the user to directly interact with the

design at a genotypic level?
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3. How does the design of the interface effect the user’s interaction with the evolutionary

algorithm?

4. Can a context free grammar based representation be used to generate architectural

designs?

Initially, experiments were carried out to address the question on non-interactive fitness

functions in Chapter 4 to examine if structural analysis could provide a means of evolving

structures for design exploration. It was found that while GE was capable of optimising

structures using multiple structural objectives, using physical constraints to restrict the

search space was not a suitable approach to design exploration as it reduced the number

of interesting or appealing designs presented to the user. It was then decided to explore

mutation as a possible means of user directed search.

To answer the question about developing user directed operators, an analysis of mu-

tation in GE was then conducted in Chapter 5. The results showed that there were two

component behaviours in standard integer mutation. The effects were classified into nodal

and structural events. Nodal events altered the leaves of a derivation tree while struc-

tural events altered the internal structure of the derivation tree. Both operators showed a

markedly different impact on fitness on the benchmark problems.

The locality of changes made to the genotype were examined at different phenotypic

levels in Chapter 6. Metrics and measures were chosen for comparing the different deriva-

tion levels. Nodal and structural mutation again showed to have a different magnitude of

effect at all phenotypic levels. The mapping process also magnified the effect during the

later stages of derivation.

An interface was then tested in Chapter 7 to examine if the user was capable of directing

search by directly applying operators. Initial experiments did not show any significant

difference. The results and user feedback was analysed and the interface was redesigned.

The results for the new interface showed that the users could direct search by applying

mutation exclusively. Analysis of the mutation events showed that users initially made
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large changes using structural mutation and then fine-tuned solutions with nodal mutation

events.

Shape generating grammars were used throughout this thesis showing that they are a

suitable representation for generating complex architectural shapes. The ability of gram-

mars to represent designs as high level abstractions and to facilitate module definition

meant that it is capable of generating complex structures and shapes. The grammars

were used to generate abstract yet connected shapes, ornate bridges and electricity pylons.

The designs output by these grammars were shown to be comparable to human generated

designs [150].

8.1.1 Contributions

Two lines of research were carried out in this thesis, an analysis of the GE algorithm

and the application of GE to architectural design. The contributions resulting from these

investigations are described separately below.

8.1.2 Analysis of GE

Performed an analysis of the behaviour of mutation in GE. A detailed examination

of mutation events consisting of a single change on the genotypic level was conducted in

Chapter 5. The results showed that changes identical at the genotypic level caused changes

of different magnitude at the derivation tree level. This finding was explored further by

examining the effect of the component behaviours of integer mutation on fitness for a series

of benchmark problems.

Ripple mutation. It was shown that mutation events at particular points on the chro-

mosome can alter the meaning of following codons. The result is that different magnitudes

of change can occur for a single mutation event. The experiments in Chapter 6 found

evidence of two distinct distributions of change on the phenotype caused by unit changes

on the genotype. The occurrence of ripple mutation during structural mutation would

generate a similar result.
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Examined the locality of mutation events at different phenotypic levels. The

study of how mutation effects the derivation tree and fitness was extended in Chapter 6

to explore the effect of mutation on locality at different levels of the derivation process.

The magnitude of change was analysed at the different phenotypic levels: the derivation

tree level, the parse tree level, the string level and the final output phenotype. The re-

sults showed that there was a clear difference in the magnitude of change at the different

derivation levels

Introduced nodal and structural mutation operators. The investigations of integer

mutation in Chapter 5 led to the development of two component operators, nodal and

structural mutation. The operators were defined mathematically and shown to explore the

search space differently.

Developed a Euclidean graph distance measure for comparing similarity in

graphs. A Euclidean distance measure was devised in order to have an objective measure

for locality at the output stage of a design. It was shown to correlate with the user’s

subjective notion of similarity.

8.1.3 Application of GE to Architectural Design

Literature review. Chapter 2 presented a review of the literature regarding computer

generated architecture, evolutionary design exploration, interactive evolutionary computa-

tion and design representations. An overview of the GE algorithm was also presented and

the operations carried out by the algorithm explained. In addition to these contributions

the conclusions that can be drawn from the experimental results is now discussed.

Evolved architectural designs using structural analysis in GE. GE had previously

been used to generate designs [143, 150] but this had been done using subjective user

preference. Chapter 4 introduced a form of structural analysis capable of being used to

evolve structures. The results showed that the fitness function was capable of reducing the

overall stress on the structure.

Developed a multi-objective fitness function for GE. Although multi-objective fit-
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ness functions have been used by genetic algorithms for optimising multiple constraints,

this is the first time an NSGA2 based multi-objective fitness has been combined with

Grammatical Evolution. The results showed that multiple constraints could be evolved si-

multaneously and that there was a statistically significant improvement for each constraint

during the course of the run.

Developed an interface to allow the user to perform a local search of an in-

dividual during IEC. The investigations carried out in Chapter 7 explored the impact

of the interface design. It was shown that the GUI preformed a critical role in allowing

the users to explore the search space. The experiments showed that animating individual

mutations successively presented more of the search space to the user and allowed them to

perceive smaller changes than were noticeable when images were presented side by side.

Conducted an analysis of user interaction with an evolutionary algorithm. The

mutation events selected by the users were categorised and examined during the interactiv-

ity experiments. The results showed that when the users were limited to mutation events

with a Hamming distance of one, they would choose low locality mutation events initially

and then refine the result with nodal mutation events.

Development of shape generating grammars for shape evolution. Grammatical

evolution was shown to be a suitable methodology for producing complex shapes that

exhibited hierarchy, regularity and modularity. It was shown that attributes could be

added to the design to allow for structural analysis of the designs.

Conducted surveys of user preference for structurally evolved designs. Partici-

pants were asked to evaluate designs that fulfilled the design constraints versus those that

did not based on their personal preference. The results in Chapter 4 showed that the users

had a distinct preference for designs that did not conform with the constraints.

8.2 Limitations of Thesis

The primary focus of this thesis was to increase the amount of direct and indirect interaction

available to the designer for evolutionary design exploration. As stated in Chapter 1, not
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all possible research avenues could be addressed.

When experimenting with any evolutionary algorithm, the choice of settings can vary

the result. In EC, a number of direct and indirect choices must be considered, e.g. the

choice of operators, the rates of crossover, mutation, selection and replacement. This

thesis has in no way made an exhaustive search of these settings. The grammars used

in our design experiments were bespoke grammars for particular designs, there been no

exhaustive search of possible grammar combinations. To allow further generalisation the

number of problems examined and settings used can always be increased and extended.

The basis of our interactive experiments was asking the participant to match a target

image. This may seem like an artificial task for a design tool as exploratory search does

not have a pre-determined outcome. Nevertheless searching for a design is a common

task, especially if the user is attempting to incorporate components of a design that they

had previously observed. As such it is a suitable methodology for search that allows for

quantifiable results as opposed to basing experiments on subjective preference for generated

designs.

A survey was conducted that showed users preferred designs that did not meet the

structural design constraints of stress reduction and material usage (Chapter 4). This re-

sult does not mean that structural analysis combined with a multi-objective fitness function

was incapable of evolving elegant designs. If the user initially directed the evolutionary

algorithm so that the population consisted of design appealing to the user, the fitness func-

tion could be used to optimise these designs and increase functionality. This is addressed

in more detail in future work.

The shape generating grammars used in this thesis were all based on context free

grammars. There are a number of areas of active research for different approaches to

grammars such as tree-adjoining grammars [132] and meta-grammars [81] that were not

examined in this thesis.
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8.3 Opportunities for Future Research

The work described in this thesis has shown that grammatical evolution is a suitable

methodology for evolving architectural designs and structures. The grammar based system

allows the designer to partake in the evolutionary process and directly manipulate the

designs for evolution. Building upon this research, there are numerous avenues for future

work.

Although structural analysis did not provide a suitable mechanism for design explo-

ration it could be applied once a suitable design is found. The user could mark preferred

designs for non-interactive optimisation. If the user wanted the topology and shaping of

the design to remain similar to their selection a low mutation rate could be used to alter

aspects of the design incrementally. Once the overall topology and shape has been chosen

the algorithm could optimise the sizes of the structural components. This would maintain

the overall aesthetic look of a design while making it more efficient.

The use of a multi-objective fitness function allows for objective aesthetic measures to

be considered by the fitness function. The addition of aesthetic consideration to the fitness

function could also generate more visually appealing designs.

User interaction with the pareto front is another interesting area worthy of further

research. As all designs on the pareto front are considered pareto-equivalent, the user

could introduce their subjective preference and direct the search by selecting the most

interesting designs from the pareto front. The animated interface discussed in Chapter 8

could provide a methodology for accelerating the evaluation process.

The behaviour of integer mutation should be categorised in greater detail. The studies

carried out in this thesis demonstrated that there are two clear components of integer

mutation. While this research provided a detailed analysis of mutation events, it is by no

means the last word on mutation in GE. It provides a starting point for further analysis

of the mutation operator. The behaviour of mutation could be decomposed further and

additional classification for mutation events could be possible.

The objective nature of the target matching experiments constrained the participant
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while they interacted with the new interface. A more unrestricted usage of the interface

could be conducted in the future. The more qualitative aspects of the interface would be

examined such as the benefit the user thinks the interface provides, as well as how much

they feel it aids their search. The interface could be used for a real world design challenge

with a control group using subjective selection exclusively.

The Euclidean graph premetric could become a fully fledged metric with some addi-

tional development. This would provide a useful tool for analysing the phenotype at the

same output stage as is presented to the user. This would be an important development in

locality analysis and would compliment the current derivation tree and sting level analysis.

The operator experiments in this thesis focused solely on integer mutation in GE. Other

GE operators could be examined using the same techniques. Specifically crossover could

be examined in detail using the locality operators developed for Chapter 6.

One of the most intriguing areas for further research is the automatic generation of

parametric design systems using evolutionary algorithms. The most difficult part of using

parametric design tools is setting up the initial model. If a repository of existing parametric

systems could be encoded as a grammar then GE would be capable of evolving these

component models. The designer could then use GE to generate a design similar to the

model they intended without having to manually implement the design. Future work in this

area would involve creating a grammar that generated models for commercial parametric

design software.
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Appendix A

Grammars

A.1 Grammar for Generating Bridges

<program> ::= <init><consts><adf><handrail><walkway><parabola>

<walkwayEdges><handrailEdges><offset_copy>

<init> ::= g = graph.graph(); handrail_node_ids=[]; walkway_node_ids=[]

<const> ::= strut_multiple = <strut_multiple>

npts = 20; pointA = [0, 0, 0]; pointB = [30, 0, 0]

<handrail> ::= def handrail(t):{return <handrail_curve>(t)}

<walkway> ::= def walkway(t):{retval=<walkway_curve>(t){}return(retval)}

<parabola> ::= def f(t):{return 1.0 - pow(2 * t - 1.0, 2)}

<adf> ::= def make_strut(i, t):

n=<nbranches>

xyz=walkway(t)

xyz[2]=p*xyz[2]+(1-p)*handrail(t)[2]

id=g.add_unique_node(xyz,’post’)

g.add_edge(i, id){}for j in range(n):

xyz=handrail(t+(j-(n-1)/2.0)/float(npts))

id2=g.add_unique_node(xyz,’handrail’)
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handrail_node_ids.append(id2){}g.add_edge(id, id2)

<handrailEdges>::=handrail_node_ids.sort()

for i in range(len(handrail_node_ids) - 1):

g.add_edge(handrail_node_ids[i], handrail_node_ids[i+1])

<walkwayEdges>::=walkway_node_ids.sort()

for i in range(len(walkway_node_ids) - 1):

g.add_edge(walkway_node_ids[i], walkway_node_ids[i+1])}

<offset_copy> ::= g.copy_and_offset_with_mirror((0.0, 5.5+0.1*<sx>,0), True)

<walkway> ::= for i in range(npts+1):

t=i/float(npts)

id = g.add_unique_node(walkway(t),’walkway’)

walkway_node_ids.append(id)

# Functions which return a point, given a scalar.

<scalar_point_func> ::= <add_scalar_point_funcs> | <bezier> | <xyzcos>

| <xyzcos> | <expcurve>

# Given a scalar t, return a point on a cubic bezier curve.

<bezier> ::= lambda t: bezier_form(t, (<bpt>, <bpt>, <bpt>, <bpt>))

<expcurve> ::= lambda t: [<xexp>, 0.0, 0.0] | lambda t: [0.0, <xexp>, 0.0]

| lambda t: [0.0, 0.0, <xexp>]

<xexp> ::= <sx> * exp(1.0 + 2 * <sx> * t)

#specify the height of the handrail

<zoffset> ::= lambda t: [0, 0, 4]

<walkway_curve> ::= (lambda t: pt_plus_pt((<interpolateAtoB>)(t),

(<z_half_cycle_sin>)(t)))

<interpolateAtoB> ::= lambda t: interpolate(t, (pointA, pointB))

<handrail_curve> ::= (<add_scalar_point_func_and_offset>)

<walkway_plus_zoffset> ::= lambda t: pt_plus_pt(walkway(t), (<zoffset>)(t))

# Given a scalar t, return a point on a diagonal between two points.

<diagonal> ::= lambda t: interpolate(t, (<pt>, <pt>))
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<add_scalar_points> ::= lambda t: pt_plus_pt((<scalar_point_func>)(t),

(<scalar_point_func>)(t))

<add_scalar_point_offset> ::= lambda t: pt_plus_pt((<scalar_point_func>)(t),

(<walkway_plus_zoffset>)(t))

# allow any number (even not a multiple of 2pi) of revolutions

<xyzcos> ::= lambda t: [<xcos>, 0.0, 0.0] | lambda t: [0.0, <xcos>, 0.0]

| lambda t: [0.0, 0.0, <xcos>]

# use 1.0 + cos() to keep it positive, avoid negative z values

<xcos> ::= <sx> * (1.0 + cos(<ndoublerevs> * 4 * pi * t))

<z_half_cycle_sin> ::= lambda t: [0.0, 0.0, 4 * <sx> * sin(pi * t)]

<pt> ::= [<sx>, <sx>, <sx>]

#<dimension> indicates x, y or z

<dimension> ::= 0 | 1 | 2

A.2 Higher Order Function Grammar for Generating

Geometric Shapes

<scene> ::= <shapes>

<shapes> ::= <list_of_shapes>

# Given a list of functions and a list of points, return a list of shapes

<list_of_shapes> ::= map(<list_of_point_to_shape_funcs>, <list_of_points>)

# Only one method of creating a list of points.

<list_of_points> ::= map(<scalar_point_func>, make_scalar_list(<n>))

# Functions which return a point, given a scalar.

<scalar_point_func> ::= <unitcircle> | <ellipse> | <diagonal> | <bezier> |

166



<spiral> | <add_scalar_point_funcs> | <sinusoid>

# Given a scalar t, return a point on the spiral around a bezier curve.

# The radius, initial phase, and number of revolutions can be specified.

<spiral> ::= spiral(t, <radius>, <phase>, <revs>, <scalar_point_func>)

# Given a scalar t, return a point on a diagonal between two points.

<diagonal> ::= interpolate(t, (<pt>, <pt>))

# Given a scalar t, return a point on a circle with given radius and centre

# in the plane indicated by <dimension>.

<unitcircle> ::= circlePath(t, <radius>, <pt>, <dimension>)

<ellipse> ::= ellipsePath(t,<radius>,<radius>,<pt>,<dimension>)

<add_scalar_point_funcs> ::= pt_plus_pt((<scalar_point_func>)(t),

(<scalar_point_func>)(t))

<sinusoid> ::= (0.0, 0.0, <xcos>) | (0.0,<xcos>, 0.0)

| (<xcos>, 0.0, 0.0)

# use 1.0 + cos() to keep it positive, avoid negative z values

# use 4pi * t so that 2 full revolutions, for t in [0, 1]

<xcos> ::= <x> * (1.0 + cos(<ndoublerevs> * 4 * pi * t))

# Given a scalar t, return a point on a cubic bezier curve.

<bezier> ::= bezier_form(t, (<pt>, <pt>, <pt>, <pt>))

# Functions which return a shape, given a point.

<point_shape_func> ::= [connect(<pt>, x)]

| [dropPerpendicular(x, 2)]

167



| connect3(x, <dimension>)

<list_of_point_to_shape_funcs> ::= [<point_shape_funcs>]

<point_shape_funcs> ::= <point_shape_func>

| <point_shape_funcs>,<point_shape_func>

<ndoublerevs> ::= 1 | 2 | 3 | 4

# points are represented as tuples

<pt> ::= (<x>, <x>, <x>)

# <x> is used for point coordinates

<x> ::= [0, 15]

# <dimension> indicates x, y or z

<dimension> ::= 0 | 1 | 2

<radius> ::= <x>

<phase> ::= [0.0, 1.0]

<revs> ::= [1, 7]
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Appendix B

Design Brief

B.1 Pedestrian Footbridges for the townships of Glebe

& St. Mullins

B.1.1 Background

The Holy Well of St. Mullins is located on the opposite shore of the river from the historic

enclave of churches and gravesite for which St. Mullins is so well known, yet forms an

integral part of this religious site. Each year on the Sunday nearest to July 25 a pilgrimage,

or pattern as it is known locally, is made between the ecclesiastical enclosure to the west

of the site to the Holy Well on the east bank of the river. This is a significant public event

in the life of this small community drawing many former residents back to the town for a

week of celebration. Currently access to the well during this event, as well as throughout

the year, is achieved using the road bridge which lies just north of the well itself. However

historically access would have been through the river itself over a set of stepping stones

which create a fording point at low water. These stones, and the stone steps on the east

bank leading down to them are still intact at the south-eastern tip of the site on which

the Holy Well stands. More recently there were two small timber bridges used to link

the church site with the well, one located just south of the stepping stones and a second
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crossing the mill race to achieve access to the eastern face of the church enclosure. These

bridges reinforced what was presumed to be the original Pilgrims Path from the rear of

the historic churches to the well and, in addition, provided the community with access

to the otherwise inaccessible, but very beautiful, lands surrounding the old mill race. In

the 1990s these bridges were removed and since that time the only access to the well has

been via the road bridge. As the lands surrounding the Holy Well and the millrace are

now in public hands there is an opportunity to both reinstate and enhance the original

Pilgrims Path with new timber bridges. The students and staff of the UCD School of

Architecture, Landscape and Civil Engineering, based on a close survey of the lands in the

autumn of 2009, made of proposition to Carlow County Council to undertake the design

and construction of a set of small pedestrian bridges to rehabilitate the original pilgrimage

route in cooperation with the Council. Based on this agreement a proposal for a renewed

route has been developed which involves the installation of three new pedestrian bridges

in this landscape.

B.1.2 Nature & Extent of Proposal

The intention of the proposal is to create a full circuit to and from the Holy Well site from

the church enclosure. It is proposed that the route starts at the Churches and, leading

down the existing stone stairway at the rear of the church enclosure, enters the landscape to

the east of the millrace from where a path, to be reinstated by the Council would lead down

the hill to the site of the bridge that crosses the millrace. From here pilgrims can reach

the east side of the river by crossing a second bridge over the river adjacent to the historic

ford created by the stepping stones. Having reached the Holy Well site there would be an

opportunity to return to the church enclosure via an additional bridge over the river at the

newly landscaped park, leading up to the cemetery itself. The location and configuration

of the largest bridge, located in the park site, has additional rational beyond completing

a full circuit of movement for the pilgrims. As the landscape surrounding the east face of

the church enclosure and the mill race is very steep and often uneven or unstable, even
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with the addition of the two bridges this route would be difficult for anyone with mobility

problems. However, as the park has a new hard surface path, recently constructed by

the Council, a bridge spanning from this path to the eastern side of the river could be

designed to accommodate people with disabilities, rather than leaving them to the use of

the road bridge. This would require an extension of a hard surface path from the east

side of the new bridge to the Holy Well itself to facilitate access, which is proposed as

future work not encompassed by the current proposal. The extent of the current proposal

is limited to the construction of three oak bridges, including all work required to provide

stable footings, the specifics of which are detailed in the accompanying drawings. Further

work on the rehabilitation or creation of related paths are outlined for future work and are

not included in this proposal.

Fig. B.1: Map of St Mullins with the possible bridge locations highlighted.
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Appendix C

Surveys

C.1 Survey for Initial Interactivity Experiment

Thank you for completing the experiment, please answer the questions below.

Some of the questions have a scale, just mark an X anywhere on the dotted line to show your preference.

When using single button, did you manage to complete the task successfully?

<all of the time> <some of the time> <none of the time>

X------------------------------------X---------------------------------------X

When using double buttons, did you manage to complete the task successfully?

<all of the time> <some of the time> <none of the time>

X------------------------------------X---------------------------------------X

For single button, did you see similarity between the bridges you selected and the generated bridges

<very similar> <kind of similar> <completely random>

X------------------------------------X---------------------------------------X

For left click on the double button experiment, did you see similarity between

the bridges you selected and the generated bridges

<very similar> <kind of similar> <completely random>

X------------------------------------X---------------------------------------X

For right click on the double button experiment, did you see similarity between

the bridges you selected and the generated bridges

<very similar> <kind of similar> <completely random>

X------------------------------------X---------------------------------------X
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For single button, in terms of reaching the target, how would you describe the

outcome?

<very close> <some similarities> <not close at all>

X------------------------------------X--------------------------------------X

For double button, in terms of reaching the target, how would you describe the

outcome?

<very close> <some similarities> <not close at all>

X------------------------------------X--------------------------------------X

For single button, how would you describe the task?

<very interesting> <indifferent> <very frustrating?>

X------------------------------------X--------------------------------------X

For double buttons, how would you describe the task?

<very interesting> <indifferent> <very frustrating?>

X------------------------------------X--------------------------------------X

For double button, Did you see a difference between left and right buttons?

<very different <some difference> <no difference>

X------------------------------------X------------------------------------X

List some of the features you used when comparing the bridges.

<big differences> <small differences>

-------------------------- --------------------------

-------------------------- --------------------------

-------------------------- --------------------------

-------------------------- --------------------------

Any other comments?

-------------------------------------------------------------

-------------------------------------------------------------
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C.2 Survey for Initial Interactivity Experiment

Fig. C.1: Survey question 1.

Fig. C.2: Survey question 2.

Fig. C.3: Survey question 3.

Fig. C.4: Survey question 4.

Fig. C.5: Survey question 5.
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